
Dynamic Logic for Practical Program Verification
Set 2

Wolfgang Ahrendt

Chalmers University of Technology, Gothenburg, Sweden

VTSA Summer School, Luxembourg, 2024

Wolfgang Ahrendt VSTA 2024 (2) 0

Part I

Dynamic Logic at Scale: The KeYsystem

Wolfgang Ahrendt VSTA 2024 (2) 1

KeY

KeY is an approach and tool for the

▶ Formal specification

▶ Deductive verification

of

▶ Software source code

using

▶ Dynamic Logic

Versions of KeY support verification of

▶ sequential Java

▶ ABS (executable modelling language for distributed objects)

▶ Solidity (Smart Contracts, work in progress)

Wolfgang Ahrendt VSTA 2024 (2) 2

KeY

KeY is an approach and tool for the

▶ Formal specification

▶ Deductive verification

of

▶ Software source code

using

▶ Dynamic Logic

Versions of KeY support verification of

▶ sequential Java

▶ ABS (executable modelling language for distributed objects)

▶ Solidity (Smart Contracts, work in progress)

Wolfgang Ahrendt VSTA 2024 (2) 2

KeY Project Partners

Karlsruhe Institute of Technology
Bernhard Beckert, Mattias Ulbrich, Peter H. Schmitt

Technical University Darmstadt
Reiner Hähnle, Richard Bubel

Chalmers University of Technology
Wolfgang Ahrendt

+ post-docs, PhD students, students, collaborators, alumni

Wolfgang Ahrendt VSTA 2024 (2) 3

The KeY Book

 123

From Theory to Practice

LN
CS

 1
00

01

Deductive
Software Verification –
The KeY Book

Wolfgang Ahrendt · Bernhard Beckert
Richard Bubel · Reiner Hähnle
Peter H. Schmitt · Mattias Ulbrich (Eds.)

Wolfgang Ahrendt VSTA 2024 (2) 4

KeY in 30 seconds

▶ Dynamic logic as program logic

▶ Calculus follows symbolic execution paradigm

▶ Sequent calculus

▶ Prover is interactive + automated
▶ most elaborate KeY instance: KeY-Java

▶ Java as target language
▶ Supports specification language JML (Java Modeling Language)

Wolfgang Ahrendt VSTA 2024 (2) 5

JML example

/*@ public normal_behavior

@ requires a != null;

@ ensures (\forall int j; j >= 0 && j < a.length;

@ \result >= a[j]);

@ ensures a.length > 0 ==>

@ (\exists int j; j >= 0 && j < a.length;

@ \result == a[j]);

@*/

public static /*@ pure @*/ int max(int[] a) {

int max = a[0], i = 1;

while (i < a.length) {

if (a[i] > max) max = a[i];

++i;

}

return max;}

Wolfgang Ahrendt VSTA 2024 (2) 6

JML to Dynamic Logic

Major components of KeY-Java
▶ Proof Obligation Generator

▶ input: Java files containing JML specs
▶ output: proof obligations in Dynamic Logic (DL) for Java

▶ KeY Prover
▶ constructing proofs in sequent calculus for DL
▶ designed for interplay of interaction and automated strategies

Wolfgang Ahrendt VSTA 2024 (2) 7

Typical KeY Workflow

Theorem Prover
Proof Obligation
Generator DL Formula

Specification

Program

File.java

?
Wolfgang Ahrendt VSTA 2024 (2) 8

Dynamic Logic for (almost) full Java

KeY supports full sequential Java, with some limitations:

▶ No generics

▶ No I/O

▶ No dynamic class loading or reflection

▶ API method calls: need either JML contract or implementation

▶ Recently added: support for floating-point numbers/arithemic

Wolfgang Ahrendt VSTA 2024 (2) 9

Dynamic Logic for (almost) full Java

KeY supports full sequential Java, with some limitations:

▶ No generics

▶ No I/O

▶ No dynamic class loading or reflection

▶ API method calls: need either JML contract or implementation

▶ Recently added: support for floating-point numbers/arithemic

Wolfgang Ahrendt VSTA 2024 (2) 9

Major Case Study with KeY: Timsort

Timsort

Hybrid sorting algorithm (insertion sort + merge sort) optimised for partially sorted arrays
(typical for real-world data).

Facts

▶ Designed by Tim Peters (for Python)

▶ In Java libraries: default algorithm for non-primitive arrays/collections

Timsort is used in standard libraries of:

▶ Java

▶ Python

▶ Android

▶ Haskell [... and many more languages / frameworks]

Wolfgang Ahrendt VSTA 2024 (2) 10

Major Case Study with KeY: Timsort

Timsort

Hybrid sorting algorithm (insertion sort + merge sort) optimised for partially sorted arrays
(typical for real-world data).

Facts

▶ Designed by Tim Peters (for Python)

▶ In Java libraries: default algorithm for non-primitive arrays/collections

Timsort is used in standard libraries of:

▶ Java

▶ Python

▶ Android

▶ Haskell [... and many more languages / frameworks]

Wolfgang Ahrendt VSTA 2024 (2) 10

Major Case Study with KeY: Timsort

Timsort

Hybrid sorting algorithm (insertion sort + merge sort) optimised for partially sorted arrays
(typical for real-world data).

Facts

▶ Designed by Tim Peters (for Python)

▶ In Java libraries: default algorithm for non-primitive arrays/collections

Timsort is used in standard libraries of:

▶ Java

▶ Python

▶ Android

▶ Haskell [... and many more languages / frameworks]

Wolfgang Ahrendt VSTA 2024 (2) 10

Timsort: People

▶ Tim Peters

▶ Sorting Algorithm Designer

▶ Python Guru

▶ Stijn de Gouw

▶ Postman in the NL

▶ Interested in sorting for professional
reasons

▶ Assistant Professor

Wolfgang Ahrendt VSTA 2024 (2) 11

Timsort: People

▶ Tim Peters

▶ Sorting Algorithm Designer

▶ Python Guru

▶ Stijn de Gouw

▶ Postman in the NL

▶ Interested in sorting for professional
reasons

▶ Assistant Professor

Wolfgang Ahrendt VSTA 2024 (2) 11

Timsort: People

▶ Tim Peters

▶ Sorting Algorithm Designer

▶ Python Guru

▶ Stijn de Gouw

▶ Postman in the NL

▶ Interested in sorting for professional
reasons

▶ Assistant Professor

Wolfgang Ahrendt VSTA 2024 (2) 11

Timsort: People

▶ Tim Peters

▶ Sorting Algorithm Designer

▶ Python Guru

▶ Stijn de Gouw

▶ Postman in the NL

▶ Interested in sorting for professional
reasons

▶ Assistant Professor

Wolfgang Ahrendt VSTA 2024 (2) 11

Timsort: People

▶ Tim Peters

▶ Sorting Algorithm Designer

▶ Python Guru

▶ Stijn de Gouw

▶ Postman in the NL

▶ Interested in sorting for professional
reasons

▶ Assistant Professor

Wolfgang Ahrendt VSTA 2024 (2) 11

Timsort: People

▶ Tim Peters

▶ Sorting Algorithm Designer

▶ Python Guru

▶ Stijn de Gouw

▶ Postman in the NL

▶ Interested in sorting for professional
reasons

▶ Assistant Professor

Wolfgang Ahrendt VSTA 2024 (2) 11

Timsort: People

▶ Tim Peters

▶ Sorting Algorithm Designer

▶ Python Guru

▶ Stijn de Gouw

▶ Postman in the NL

▶ Interested in sorting for professional
reasons

▶ Assistant Professor

Wolfgang Ahrendt VSTA 2024 (2) 11

Timsort: People

▶ Tim Peters

▶ Sorting Algorithm Designer

▶ Python Guru

▶ Stijn de Gouw

▶ Postman in the NL

▶ Interested in sorting for professional
reasons

▶ Assistant Professor

Wolfgang Ahrendt VSTA 2024 (2) 11

Timsort: People

▶ Tim Peters

▶ Sorting Algorithm Designer

▶ Python Guru

▶ Stijn de Gouw

▶ Postman in the NL

▶ Interested in sorting for professional
reasons

▶ Assistant Professor

Wolfgang Ahrendt VSTA 2024 (2) 11

Timsort: People

▶ Tim Peters

▶ Sorting Algorithm Designer

▶ Python Guru

▶ Stijn de Gouw

▶ Postman in the NL

▶ Interested in sorting for professional
reasons

▶ Assistant Professor

Wolfgang Ahrendt VSTA 2024 (2) 11

Major Case Study with KeY

Found Bug in Java Libraries’ main Sorting Method using KeY

▶ java.util.Collections.sort and java.util.Arrays.sort

implement Timsort

▶ KeY verification of OpenJDK implementation revealed bug.

▶ Same bug present in Android SDK, Oracle’s JDK, Python library, and ... Haskell library

Verified Fix using KeY

▶ Fixing the (OpenJDK) implementation

▶ Verified new version with KeY (no IndexOutOfBoundsException)

Wolfgang Ahrendt VSTA 2024 (2) 12

Major Case Study with KeY

Found Bug in Java Libraries’ main Sorting Method using KeY

▶ java.util.Collections.sort and java.util.Arrays.sort

implement Timsort

▶ KeY verification of OpenJDK implementation revealed bug.

▶ Same bug present in Android SDK, Oracle’s JDK, Python library, and ... Haskell library

Verified Fix using KeY

▶ Fixing the (OpenJDK) implementation

▶ Verified new version with KeY (no IndexOutOfBoundsException)

Wolfgang Ahrendt VSTA 2024 (2) 12

Major Case Study with KeY

Found Bug in Java Libraries’ main Sorting Method using KeY

▶ java.util.Collections.sort and java.util.Arrays.sort

implement Timsort

▶ KeY verification of OpenJDK implementation revealed bug.

▶ Same bug present in Android SDK, Oracle’s JDK, Python library, and ... Haskell library

Verified Fix using KeY

▶ Fixing the (OpenJDK) implementation

▶ Verified new version with KeY (no IndexOutOfBoundsException)

Wolfgang Ahrendt VSTA 2024 (2) 12

Major Case Study with KeY

Found Bug in Java Libraries’ main Sorting Method using KeY

▶ java.util.Collections.sort and java.util.Arrays.sort

implement Timsort

▶ KeY verification of OpenJDK implementation revealed bug.

▶ Same bug present in Android SDK, Oracle’s JDK, Python library, and ... Haskell library

Verified Fix using KeY

▶ Fixing the (OpenJDK) implementation

▶ Verified new version with KeY (no IndexOutOfBoundsException)

Som
e re

sea
rch

ers
fou

nd
an

erro
r in

the

log
ic o

f m
erg

e c
olla

pse
, ex

pla
ine

d her
e,

and
wit

h cor
rec

ted
cod

e sh
own

in

. . .

It s
hou

ld be
fixe

d any
way

, an
d the

ir s
ug-

ges
ted

fix
loo

ks
goo

d to
me

.

Tim
Pet

ers
via

Pyt
hon

-Bu
gtr

ack
er

Wolfgang Ahrendt VSTA 2024 (2) 12

Major Case Study with KeY

Found Bug in Java Libraries’ main Sorting Method using KeY

▶ java.util.Collections.sort and java.util.Arrays.sort

implement Timsort

▶ KeY verification of OpenJDK implementation revealed bug.

▶ Same bug present in Android SDK, Oracle’s JDK, Python library, and ... Haskell library

Verified Fix using KeY

▶ Fixing the (OpenJDK) implementation

▶ Verified new version with KeY (no IndexOutOfBoundsException)

Som
e re

sea
rch

ers
fou

nd
an

erro
r in

the

log
ic o

f m
erg

e c
olla

pse
, ex

pla
ine

d her
e,

and
wit

h cor
rec

ted
cod

e sh
own

in

. . .

It s
hou

ld be
fixe

d any
way

, an
d the

ir s
ug-

ges
ted

fix
loo

ks
goo

d to
me

.

Tim
Pet

ers
via

Pyt
hon

-Bu
gtr

ack
er

Congratulations to Stijn de Gouw et al.

for finding and fixing a bug in TimSort

using formal methods!Joshua Bloch via Twitter

Wolfgang Ahrendt VSTA 2024 (2) 12

Fixed and Verified the Implementation

Verification with KeY

▶ Adding support for bitwise operations to KeY

▶ 460 lines of specification vs. 928 lines of code

▶ Fixed version formally verified (absence of exceptions)

▶ Whole project 2.5 person month

Wolfgang Ahrendt VSTA 2024 (2) 13

Aftermath

▶ Java community choose sub-optimal fix (increasing stack size)

▶ Python community adopted KeYfix
▶ Bug affected

▶ Java
▶ Android
▶ Python
▶ Apache: Lucene, Hadoop, Spark++
▶ Go, D, Haskell

Language Min. array length req. to trigger error

Android 65.536 (216)

Java 67.108.864 (226)

Python 562.949.953.421.312 (249)

▶ blog with >3 million page views

▶ top news on ycombinator, reddit, Hacker News etc.

Wolfgang Ahrendt VSTA 2024 (2) 14

Aftermath

▶ Java community choose sub-optimal fix (increasing stack size)

▶ Python community adopted KeYfix

▶ Bug affected
▶ Java
▶ Android
▶ Python
▶ Apache: Lucene, Hadoop, Spark++
▶ Go, D, Haskell

Language Min. array length req. to trigger error

Android 65.536 (216)

Java 67.108.864 (226)

Python 562.949.953.421.312 (249)

▶ blog with >3 million page views

▶ top news on ycombinator, reddit, Hacker News etc.

Wolfgang Ahrendt VSTA 2024 (2) 14

Aftermath

▶ Java community choose sub-optimal fix (increasing stack size)

▶ Python community adopted KeYfix
▶ Bug affected

▶ Java
▶ Android
▶ Python
▶ Apache: Lucene, Hadoop, Spark++
▶ Go, D, Haskell

Language Min. array length req. to trigger error

Android 65.536 (216)

Java 67.108.864 (226)

Python 562.949.953.421.312 (249)

▶ blog with >3 million page views

▶ top news on ycombinator, reddit, Hacker News etc.

Wolfgang Ahrendt VSTA 2024 (2) 14

Aftermath

▶ Java community choose sub-optimal fix (increasing stack size)

▶ Python community adopted KeYfix
▶ Bug affected

▶ Java
▶ Android
▶ Python
▶ Apache: Lucene, Hadoop, Spark++
▶ Go, D, Haskell

Language Min. array length req. to trigger error

Android 65.536 (216)

Java 67.108.864 (226)

Python 562.949.953.421.312 (249)

▶ blog with >3 million page views

▶ top news on ycombinator, reddit, Hacker News etc.

Wolfgang Ahrendt VSTA 2024 (2) 14

References

▶ Stijn de Gouw, Jurriaan Rot, Frank S. de Boer,
Richard Bubel, Reiner Hähnle
OpenJDK’s Java.utils.Collection.sort() Is Broken:
The Good, the Bad and the Worst Case
CAV 2015

Wolfgang Ahrendt VSTA 2024 (2) 15

Part II

KeY Prover Intro:
First-Order Sequent Calculus

Wolfgang Ahrendt VSTA 2024 (2) 16

Motivation for Introducing First-Order Logic

We verify Java programs using First-Order Dynamic Logic

First-order Java DL combines

▶ First-Order Logic (FOL)

▶ Java programs

Wolfgang Ahrendt VSTA 2024 (2) 17

First-Order Formulas

Formulas

▶ each atomic formula is a formula

▶ with φ and ψ formulas, x a variable, and τ a type,
the following are also formulas:
▶ ¬φ (“not φ”)
▶ φ ∧ ψ (“φ and ψ”)
▶ φ ∨ ψ (“φ or ψ”)
▶ φ→ ψ (“φ implies ψ”)
▶ φ↔ ψ (“φ is equivalent to ψ”)

▶ ∀ τ x ; φ (“for all x of type τ holds φ”)
▶ ∃ τ x ; φ (“there exists an x of type τ such that φ”)

In ∀ τ x ; φ and ∃ τ x ; φ the variable x is ‘bound’ (i.e., ‘not free’).

Formulas with no free variable are ‘closed’.

Wolfgang Ahrendt VSTA 2024 (2) 18

First-Order Formulas

Formulas

▶ each atomic formula is a formula

▶ with φ and ψ formulas, x a variable, and τ a type,
the following are also formulas:
▶ ¬φ (“not φ”)
▶ φ ∧ ψ (“φ and ψ”)
▶ φ ∨ ψ (“φ or ψ”)
▶ φ→ ψ (“φ implies ψ”)
▶ φ↔ ψ (“φ is equivalent to ψ”)
▶ ∀ τ x ; φ (“for all x of type τ holds φ”)
▶ ∃ τ x ; φ (“there exists an x of type τ such that φ”)

In ∀ τ x ; φ and ∃ τ x ; φ the variable x is ‘bound’ (i.e., ‘not free’).

Formulas with no free variable are ‘closed’.

Wolfgang Ahrendt VSTA 2024 (2) 18

First-Order Formulas

Formulas

▶ each atomic formula is a formula

▶ with φ and ψ formulas, x a variable, and τ a type,
the following are also formulas:
▶ ¬φ (“not φ”)
▶ φ ∧ ψ (“φ and ψ”)
▶ φ ∨ ψ (“φ or ψ”)
▶ φ→ ψ (“φ implies ψ”)
▶ φ↔ ψ (“φ is equivalent to ψ”)
▶ ∀ τ x ; φ (“for all x of type τ holds φ”)
▶ ∃ τ x ; φ (“there exists an x of type τ such that φ”)

In ∀ τ x ; φ and ∃ τ x ; φ the variable x is ‘bound’ (i.e., ‘not free’).

Formulas with no free variable are ‘closed’.

Wolfgang Ahrendt VSTA 2024 (2) 18

First-Order Formulas

Formulas

▶ each atomic formula is a formula

▶ with φ and ψ formulas, x a variable, and τ a type,
the following are also formulas:
▶ ¬φ (“not φ”)
▶ φ ∧ ψ (“φ and ψ”)
▶ φ ∨ ψ (“φ or ψ”)
▶ φ→ ψ (“φ implies ψ”)
▶ φ↔ ψ (“φ is equivalent to ψ”)
▶ ∀ τ x ; φ (“for all x of type τ holds φ”)
▶ ∃ τ x ; φ (“there exists an x of type τ such that φ”)

In ∀ τ x ; φ and ∃ τ x ; φ the variable x is ‘bound’ (i.e., ‘not free’).

Formulas with no free variable are ‘closed’.

Wolfgang Ahrendt VSTA 2024 (2) 18

Reasoning by Syntactic Transformation

Prove validity of φ by syntactic transformation of φ

Sequent Calculus based on notion of sequent:

ψ1, . . . , ψm︸ ︷︷ ︸
antecedent

=⇒ φ1, . . . , φn︸ ︷︷ ︸
succedent

has same meaning as
(ψ1 ∧ · · · ∧ ψm) → (φ1 ∨ · · · ∨ φn)

which (for closed formulas ψi , φi) is equivalent to

{ψ1, . . . , ψm} |= φ1 ∨ · · · ∨ φn

Wolfgang Ahrendt VSTA 2024 (2) 19

Reasoning by Syntactic Transformation

Prove validity of φ by syntactic transformation of φ

Sequent Calculus based on notion of sequent:

ψ1, . . . , ψm︸ ︷︷ ︸
antecedent

=⇒ φ1, . . . , φn︸ ︷︷ ︸
succedent

has same meaning as
(ψ1 ∧ · · · ∧ ψm) → (φ1 ∨ · · · ∨ φn)

which (for closed formulas ψi , φi) is equivalent to

{ψ1, . . . , ψm} |= φ1 ∨ · · · ∨ φn

Wolfgang Ahrendt VSTA 2024 (2) 19

Reasoning by Syntactic Transformation

Prove validity of φ by syntactic transformation of φ

Sequent Calculus based on notion of sequent:

ψ1, . . . , ψm︸ ︷︷ ︸
antecedent

=⇒ φ1, . . . , φn︸ ︷︷ ︸
succedent

has same meaning as
(ψ1 ∧ · · · ∧ ψm) → (φ1 ∨ · · · ∨ φn)

which (for closed formulas ψi , φi) is equivalent to

{ψ1, . . . , ψm} |= φ1 ∨ · · · ∨ φn

Wolfgang Ahrendt VSTA 2024 (2) 19

Reasoning by Syntactic Transformation

Prove validity of φ by syntactic transformation of φ

Sequent Calculus based on notion of sequent:

ψ1, . . . , ψm︸ ︷︷ ︸
antecedent

=⇒ φ1, . . . , φn︸ ︷︷ ︸
succedent

has same meaning as
(ψ1 ∧ · · · ∧ ψm) → (φ1 ∨ · · · ∨ φn)

which (for closed formulas ψi , φi) is equivalent to

{ψ1, . . . , ψm} |= φ1 ∨ · · · ∨ φn

Wolfgang Ahrendt VSTA 2024 (2) 19

Notation for Sequents

ψ1, . . . , ψm =⇒ φ1, . . . , φn

Consider antecedent/succedent as sets of formulas (possibly empty)

Schema Variables

φ,ψ, . . . match formulas.
Γ,∆, . . . match sets of formulas.
Characterize infinitely many sequents with single schematic sequent, e.g.,

Γ =⇒ φ ∧ ψ, ∆

matches any sequent with occurrence of conjunction in succedent.

Here, we call φ ∧ ψ main formula and Γ,∆ side formulas of sequent

Wolfgang Ahrendt VSTA 2024 (2) 20

Notation for Sequents

ψ1, . . . , ψm =⇒ φ1, . . . , φn

Consider antecedent/succedent as sets of formulas (possibly empty)

Schema Variables

φ,ψ, . . . match formulas.
Γ,∆, . . . match sets of formulas.
Characterize infinitely many sequents with single schematic sequent, e.g.,

Γ =⇒ φ ∧ ψ, ∆

matches any sequent with occurrence of conjunction in succedent.

Here, we call φ ∧ ψ main formula and Γ,∆ side formulas of sequent

Wolfgang Ahrendt VSTA 2024 (2) 20

Sequent Calculus Rules

Write syntactic transformation schema for sequents,
reflecting semantics of connectives

RuleName

premisses︷ ︸︸ ︷
Γ1 =⇒ ∆1 · · · Γr =⇒ ∆r

Γ =⇒ ∆︸ ︷︷ ︸
conclusion

Meaning: For proving the conclusion, it suffices to prove all premisses.

Example

andRight
Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

Admissible to have no premisses (then the rule is called ‘axiom’).

A rule is sound (correct) iff the validity of all premisses implies the validity of the conclusion.

Wolfgang Ahrendt VSTA 2024 (2) 21

Sequent Calculus Rules

Write syntactic transformation schema for sequents,
reflecting semantics of connectives

RuleName

premisses︷ ︸︸ ︷
Γ1 =⇒ ∆1 · · · Γr =⇒ ∆r

Γ =⇒ ∆︸ ︷︷ ︸
conclusion

Meaning: For proving the conclusion, it suffices to prove all premisses.

Example

andRight
Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

Admissible to have no premisses (then the rule is called ‘axiom’).

A rule is sound (correct) iff the validity of all premisses implies the validity of the conclusion.

Wolfgang Ahrendt VSTA 2024 (2) 21

Sequent Calculus Rules

Write syntactic transformation schema for sequents,
reflecting semantics of connectives

RuleName

premisses︷ ︸︸ ︷
Γ1 =⇒ ∆1 · · · Γr =⇒ ∆r

Γ =⇒ ∆︸ ︷︷ ︸
conclusion

Meaning: For proving the conclusion, it suffices to prove all premisses.

Example

andRight
Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

Admissible to have no premisses (then the rule is called ‘axiom’).

A rule is sound (correct) iff the validity of all premisses implies the validity of the conclusion.
Wolfgang Ahrendt VSTA 2024 (2) 21

‘Propositional’ Sequent Calculus Rules

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

left side (antecedent) right side (succedent)

not
Γ =⇒ φ,∆

Γ,¬φ =⇒ ∆

Γ, φ =⇒ ∆

Γ =⇒ ¬φ,∆

and
Γ, φ, ψ =⇒ ∆

Γ, φ ∧ ψ =⇒ ∆

Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

or
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ ∨ ψ =⇒ ∆

Γ =⇒ φ, ψ,∆

Γ =⇒ φ ∨ ψ,∆

imp
Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ→ ψ =⇒ ∆

Γ, φ =⇒ ψ,∆

Γ =⇒ φ→ ψ,∆

Wolfgang Ahrendt VSTA 2024 (2) 22

‘Propositional’ Sequent Calculus Rules

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

left side (antecedent) right side (succedent)

not
Γ =⇒ φ,∆

Γ,¬φ =⇒ ∆

Γ, φ =⇒ ∆

Γ =⇒ ¬φ,∆

and
Γ, φ, ψ =⇒ ∆

Γ, φ ∧ ψ =⇒ ∆

Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

or
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ ∨ ψ =⇒ ∆

Γ =⇒ φ, ψ,∆

Γ =⇒ φ ∨ ψ,∆

imp
Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ→ ψ =⇒ ∆

Γ, φ =⇒ ψ,∆

Γ =⇒ φ→ ψ,∆

Wolfgang Ahrendt VSTA 2024 (2) 22

‘Propositional’ Sequent Calculus Rules

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

left side (antecedent) right side (succedent)

not
Γ =⇒ φ,∆

Γ,¬φ =⇒ ∆

Γ, φ =⇒ ∆

Γ =⇒ ¬φ,∆

and
Γ, φ, ψ =⇒ ∆

Γ, φ ∧ ψ =⇒ ∆

Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

or
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ ∨ ψ =⇒ ∆

Γ =⇒ φ, ψ,∆

Γ =⇒ φ ∨ ψ,∆

imp
Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ→ ψ =⇒ ∆

Γ, φ =⇒ ψ,∆

Γ =⇒ φ→ ψ,∆

Wolfgang Ahrendt VSTA 2024 (2) 22

‘Propositional’ Sequent Calculus Rules

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

left side (antecedent) right side (succedent)

not
Γ =⇒ φ,∆

Γ,¬φ =⇒ ∆

Γ, φ =⇒ ∆

Γ =⇒ ¬φ,∆

and
Γ, φ, ψ =⇒ ∆

Γ, φ ∧ ψ =⇒ ∆

Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

or
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ ∨ ψ =⇒ ∆

Γ =⇒ φ, ψ,∆

Γ =⇒ φ ∨ ψ,∆

imp
Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ→ ψ =⇒ ∆

Γ, φ =⇒ ψ,∆

Γ =⇒ φ→ ψ,∆

Wolfgang Ahrendt VSTA 2024 (2) 22

‘Propositional’ Sequent Calculus Rules

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

left side (antecedent) right side (succedent)

not
Γ =⇒ φ,∆

Γ,¬φ =⇒ ∆

Γ, φ =⇒ ∆

Γ =⇒ ¬φ,∆

and
Γ, φ, ψ =⇒ ∆

Γ, φ ∧ ψ =⇒ ∆

Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

or
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ ∨ ψ =⇒ ∆

Γ =⇒ φ, ψ,∆

Γ =⇒ φ ∨ ψ,∆

imp
Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ→ ψ =⇒ ∆

Γ, φ =⇒ ψ,∆

Γ =⇒ φ→ ψ,∆

Wolfgang Ahrendt VSTA 2024 (2) 22

‘Propositional’ Sequent Calculus Rules

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

left side (antecedent) right side (succedent)

not
Γ =⇒ φ,∆

Γ,¬φ =⇒ ∆

Γ, φ =⇒ ∆

Γ =⇒ ¬φ,∆

and
Γ, φ, ψ =⇒ ∆

Γ, φ ∧ ψ =⇒ ∆

Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

or
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ ∨ ψ =⇒ ∆

Γ =⇒ φ, ψ,∆

Γ =⇒ φ ∨ ψ,∆

imp
Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ→ ψ =⇒ ∆

Γ, φ =⇒ ψ,∆

Γ =⇒ φ→ ψ,∆

Wolfgang Ahrendt VSTA 2024 (2) 22

‘Propositional’ Sequent Calculus Rules

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

left side (antecedent) right side (succedent)

not
Γ =⇒ φ,∆

Γ,¬φ =⇒ ∆

Γ, φ =⇒ ∆

Γ =⇒ ¬φ,∆

and
Γ, φ, ψ =⇒ ∆

Γ, φ ∧ ψ =⇒ ∆

Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

or
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ ∨ ψ =⇒ ∆

Γ =⇒ φ, ψ,∆

Γ =⇒ φ ∨ ψ,∆

imp
Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ→ ψ =⇒ ∆

Γ, φ =⇒ ψ,∆

Γ =⇒ φ→ ψ,∆

Wolfgang Ahrendt VSTA 2024 (2) 22

‘Propositional’ Sequent Calculus Rules

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

left side (antecedent) right side (succedent)

not
Γ =⇒ φ,∆

Γ,¬φ =⇒ ∆

Γ, φ =⇒ ∆

Γ =⇒ ¬φ,∆

and
Γ, φ, ψ =⇒ ∆

Γ, φ ∧ ψ =⇒ ∆

Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

or
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ ∨ ψ =⇒ ∆

Γ =⇒ φ, ψ,∆

Γ =⇒ φ ∨ ψ,∆

imp
Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ→ ψ =⇒ ∆

Γ, φ =⇒ ψ,∆

Γ =⇒ φ→ ψ,∆

Wolfgang Ahrendt VSTA 2024 (2) 22

Sequent Calculus Proofs

Goal to prove: G = ψ1, . . . , ψm =⇒ φ1, . . . , φn

▶ find rule R whose conclusion matches G
▶ instantiate R such that its conclusion is identical to G
▶ apply that instantiation to all premisses of R, resulting in new goals G1, . . . , Gr

▶ recursively find proofs for G1, . . . , Gr

▶ tree structure with goal as root

▶ close proof branch when applying rule without premiss

Goal-directed proof search

▶ Paper proofs: root at bottom, grow upwards

▶ KeY tool proofs: root at top, grow downwards

Wolfgang Ahrendt VSTA 2024 (2) 23

Sequent Calculus Proofs

Goal to prove: G = ψ1, . . . , ψm =⇒ φ1, . . . , φn

▶ find rule R whose conclusion matches G
▶ instantiate R such that its conclusion is identical to G
▶ apply that instantiation to all premisses of R, resulting in new goals G1, . . . , Gr

▶ recursively find proofs for G1, . . . , Gr

▶ tree structure with goal as root

▶ close proof branch when applying rule without premiss

Goal-directed proof search

▶ Paper proofs: root at bottom, grow upwards

▶ KeY tool proofs: root at top, grow downwards

Wolfgang Ahrendt VSTA 2024 (2) 23

A Simple Proof

=⇒ (p ∧ (p → q)) → q

A proof is closed iff all its branches are closed

Demo
prop.key

Wolfgang Ahrendt VSTA 2024 (2) 24

A Simple Proof

p ∧ (p → q) =⇒ q

=⇒ (p ∧ (p → q)) → q

A proof is closed iff all its branches are closed

Demo
prop.key

Wolfgang Ahrendt VSTA 2024 (2) 24

A Simple Proof

p, (p → q) =⇒ q

p ∧ (p → q) =⇒ q

=⇒ (p ∧ (p → q)) → q

A proof is closed iff all its branches are closed

Demo
prop.key

Wolfgang Ahrendt VSTA 2024 (2) 24

A Simple Proof

p =⇒ p, q p, q =⇒ q

p, (p → q) =⇒ q

p ∧ (p → q) =⇒ q

=⇒ (p ∧ (p → q)) → q

A proof is closed iff all its branches are closed

Demo
prop.key

Wolfgang Ahrendt VSTA 2024 (2) 24

A Simple Proof

Close
∗

p =⇒ p, q

∗
p, q =⇒ q

Close

p, (p → q) =⇒ q

p ∧ (p → q) =⇒ q

=⇒ (p ∧ (p → q)) → q

A proof is closed iff all its branches are closed

Demo
prop.key

Wolfgang Ahrendt VSTA 2024 (2) 24

A Simple Proof

Close
∗

p =⇒ p, q

∗
p, q =⇒ q

Close

p, (p → q) =⇒ q

p ∧ (p → q) =⇒ q

=⇒ (p ∧ (p → q)) → q

A proof is closed iff all its branches are closed

Demo
prop.key

Wolfgang Ahrendt VSTA 2024 (2) 24

Proving Validity of First-Order Formulas

Proving a universally quantified formula

Claim: ∀ τ x ; φ is true

How is such a claim proved in Mathematics?

All even numbers are divisible by 2 ∀ int x ; (even(x) → divByTwo(x))

Let c be an arbitrary number Declare “unused” constant int c

The even number c is divisible by 2 Prove even(c) → divByTwo(c)

Sequent rule ∀-right

forallRight
Γ =⇒ [x/c]φ,∆

Γ =⇒ ∀ τ x ; φ,∆

▶ [x/c]φ is result of replacing each occurrence of x in φ with c

▶ c new constant of type τ

Wolfgang Ahrendt VSTA 2024 (2) 25

Proving Validity of First-Order Formulas

Proving a universally quantified formula

Claim: ∀ τ x ; φ is true

How is such a claim proved in Mathematics?

All even numbers are divisible by 2 ∀ int x ; (even(x) → divByTwo(x))

Let c be an arbitrary number Declare “unused” constant int c

The even number c is divisible by 2 Prove even(c) → divByTwo(c)

Sequent rule ∀-right

forallRight
Γ =⇒ [x/c]φ,∆

Γ =⇒ ∀ τ x ; φ,∆

▶ [x/c]φ is result of replacing each occurrence of x in φ with c

▶ c new constant of type τ
Wolfgang Ahrendt VSTA 2024 (2) 25

Proving Validity of First-Order Formulas Cont’d

Proving an existentially quantified formula

Claim: ∃ τ x ; φ is true

How is such a claim proved in Mathematics?

There is at least one prime number ∃ int x ; prime(x)

Provide any “witness”, say, 7 Use variable-free term int 7

7 is a prime number Prove prime(7)

Sequent rule ∃-right

existsRight
Γ =⇒ [x/t]φ, ∃ τ x ; φ,∆

Γ =⇒ ∃ τ x ; φ,∆

▶ t any variable-free term of type τ

▶ We might need other instances besides t! Keep ∃ τ x ; φ

Wolfgang Ahrendt VSTA 2024 (2) 26

Proving Validity of First-Order Formulas Cont’d

Proving an existentially quantified formula

Claim: ∃ τ x ; φ is true

How is such a claim proved in Mathematics?

There is at least one prime number ∃ int x ; prime(x)

Provide any “witness”, say, 7 Use variable-free term int 7

7 is a prime number Prove prime(7)

Sequent rule ∃-right

existsRight
Γ =⇒ [x/t]φ, ∃ τ x ; φ,∆

Γ =⇒ ∃ τ x ; φ,∆

▶ t any variable-free term of type τ

▶ We might need other instances besides t! Keep ∃ τ x ; φ
Wolfgang Ahrendt VSTA 2024 (2) 26

Proving Validity of First-Order Formulas Cont’d

Using a universally quantified formula

We assume ∀ τ x ; φ is true.

How is such a fact used in a Mathematical proof?

We know that all primes are odd ∀ int x ; (prime(x) → odd(x))

In particular, this holds for 17 Use variable-free term int 17

We know: if 17 is prime it is odd prime(17) → odd(17)

Sequent rule ∀-left

forallLeft
Γ,∀ τ x ; φ, [x/t]φ =⇒ ∆

Γ,∀ τ x ; φ =⇒ ∆

▶ t any variable-free term of type τ

▶ We might need other instances besides t! Keep ∀ τ x ; φ

Wolfgang Ahrendt VSTA 2024 (2) 27

Proving Validity of First-Order Formulas Cont’d

Using a universally quantified formula

We assume ∀ τ x ; φ is true.

How is such a fact used in a Mathematical proof?

We know that all primes are odd ∀ int x ; (prime(x) → odd(x))

In particular, this holds for 17 Use variable-free term int 17

We know: if 17 is prime it is odd prime(17) → odd(17)

Sequent rule ∀-left

forallLeft
Γ, ∀ τ x ; φ, [x/t]φ =⇒ ∆

Γ,∀ τ x ; φ =⇒ ∆

▶ t any variable-free term of type τ

▶ We might need other instances besides t! Keep ∀ τ x ; φ
Wolfgang Ahrendt VSTA 2024 (2) 27

Proving Validity of First-Order Formulas Cont’d

Using an existentially quantified formula

We assume ∃ τ x ; φ is true

How is such a fact used in a Mathematical proof?

We know such an element exists. Let’s give that element it a new name.

Sequent rule ∃-left

existsLeft
Γ, [x/c]φ =⇒ ∆

Γ,∃ τ x ; φ =⇒ ∆

▶ c new constant of type τ

Wolfgang Ahrendt VSTA 2024 (2) 28

Proving Validity of First-Order Formulas Cont’d

Using an existentially quantified formula

We assume ∃ τ x ; φ is true

How is such a fact used in a Mathematical proof?

We know such an element exists. Let’s give that element it a new name.

Sequent rule ∃-left

existsLeft
Γ, [x/c]φ =⇒ ∆

Γ, ∃ τ x ; φ =⇒ ∆

▶ c new constant of type τ

Wolfgang Ahrendt VSTA 2024 (2) 28

Proving Validity of First-Order Formulas Cont’d

Using an equation between terms

We assume t = t ′ is true

How is such a fact used in a Mathematical proof?

x = y−1 =⇒ (x+1)/y = 1

Use x = y−1 to modify (x+1)/y :
Replace x in succedent with right-hand side of antecedent

x = y−1 =⇒ (y−1+1)/y = 1

Sequent rule =-left

applyEqL
Γ, t = t ′, [t/t ′]φ =⇒ ∆

Γ, t = t ′, φ =⇒ ∆
applyEqR

Γ, t = t ′ =⇒ [t/t ′]φ,∆

Γ, t = t ′ =⇒ φ,∆

▶ Always replace left- with right-hand side (use eqSymm if necessary)

▶ t,t ′ variable-free terms of the same type

Wolfgang Ahrendt VSTA 2024 (2) 29

Proving Validity of First-Order Formulas Cont’d

Using an equation between terms

We assume t = t ′ is true

How is such a fact used in a Mathematical proof?

x = y−1 =⇒ (x+1)/y = 1

Use x = y−1 to modify (x+1)/y :
Replace x in succedent with right-hand side of antecedent

x = y−1 =⇒ (y−1+1)/y = 1

Sequent rule =-left

applyEqL
Γ, t = t ′, [t/t ′]φ =⇒ ∆

Γ, t = t ′, φ =⇒ ∆
applyEqR

Γ, t = t ′ =⇒ [t/t ′]φ,∆

Γ, t = t ′ =⇒ φ,∆

▶ Always replace left- with right-hand side (use eqSymm if necessary)

▶ t,t ′ variable-free terms of the same type

Wolfgang Ahrendt VSTA 2024 (2) 29

Proving Validity of First-Order Formulas Cont’d

Using an equation between terms

We assume t = t ′ is true

How is such a fact used in a Mathematical proof?

x = y−1 =⇒ (x+1)/y = 1

Use x = y−1 to modify (x+1)/y :
Replace x in succedent with right-hand side of antecedent

x = y−1 =⇒ (y−1+1)/y = 1

Sequent rule =-left

applyEqL
Γ, t = t ′, [t/t ′]φ =⇒ ∆

Γ, t = t ′, φ =⇒ ∆
applyEqR

Γ, t = t ′ =⇒ [t/t ′]φ,∆

Γ, t = t ′ =⇒ φ,∆

▶ Always replace left- with right-hand side (use eqSymm if necessary)

▶ t,t ′ variable-free terms of the same type
Wolfgang Ahrendt VSTA 2024 (2) 29

Proving Validity of First-Order Formulas Cont’d

Closing a subgoal in a proof

▶ We derived a sequent that is trivially valid

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

▶ We derived an equation that is trivially valid

eqClose
Γ =⇒ t = t,∆

Wolfgang Ahrendt VSTA 2024 (2) 30

Sequent Calculus for FOL at One Glance

left side, antecedent right side, succedent

∀
Γ, ∀ τ x ; φ, [x/t ′]φ =⇒ ∆

Γ, ∀ τ x ; φ =⇒ ∆

Γ =⇒ [x/c]φ,∆

Γ =⇒ ∀ τ x ; φ,∆

∃
Γ, [x/c]φ =⇒ ∆

Γ, ∃ τ x ; φ =⇒ ∆

Γ =⇒ [x/t ′]φ, ∃ τ x ; φ,∆
Γ =⇒ ∃ τ x ; φ,∆

=
Γ, t = t ′ =⇒ [t/t ′]φ,∆

Γ, t = t ′ =⇒ φ,∆ Γ =⇒ t = t,∆
(+ application rule on left side)

▶ [t/t ′]φ is result of replacing each occurrence of t in φ with t ′

▶ t,t ′ variable-free terms of type τ

▶ c new constant of type τ (occurs not on current proof branch)

▶ Equations can be reversed by commutativity

Wolfgang Ahrendt VSTA 2024 (2) 31

Recap: ‘Propositional’ Sequent Calculus Rules

main left side (antecedent) right side (succedent)

not
Γ =⇒ φ,∆

Γ,¬φ =⇒ ∆

Γ, φ =⇒ ∆

Γ =⇒ ¬φ,∆

and
Γ, φ, ψ =⇒ ∆

Γ, φ ∧ ψ =⇒ ∆

Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

or
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ ∨ ψ =⇒ ∆

Γ =⇒ φ, ψ,∆

Γ =⇒ φ ∨ ψ,∆

imp
Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ→ ψ =⇒ ∆

Γ, φ =⇒ ψ,∆

Γ =⇒ φ→ ψ,∆

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

Wolfgang Ahrendt VSTA 2024 (2) 32

Proving Validity of First-Order Formulas Cont’d

Example (A simple theorem about binary relations)

∗
p(c, d), ∀ y ; p(c , y) =⇒ p(c , d), ∃ x ; p(x , d)

p(c , d), ∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)
∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∃ x ; ∀ y ; p(x , y) =⇒ ∀ y ; ∃ x ; p(x , y)

“Untyped” logic: let type of x and y be any

Wolfgang Ahrendt VSTA 2024 (2) 33

Proving Validity of First-Order Formulas Cont’d

Example (A simple theorem about binary relations)

∗
p(c, d), ∀ y ; p(c , y) =⇒ p(c , d), ∃ x ; p(x , d)

p(c , d), ∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)
∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∀ y ; ∃ x ; p(x , y)
∃ x ; ∀ y ; p(x , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∃-left: substitute new constant c for x

Wolfgang Ahrendt VSTA 2024 (2) 33

Proving Validity of First-Order Formulas Cont’d

Example (A simple theorem about binary relations)

∗
p(c, d), ∀ y ; p(c , y) =⇒ p(c , d), ∃ x ; p(x , d)

p(c , d), ∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)
∀ y ; p(c , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∃ x ; ∀ y ; p(x , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∀-right: substitute new constant d for y

Wolfgang Ahrendt VSTA 2024 (2) 33

Proving Validity of First-Order Formulas Cont’d

Example (A simple theorem about binary relations)

∗
p(c, d), ∀ y ; p(c , y) =⇒ p(c , d), ∃ x ; p(x , d)

p(c , d), ∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)
∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∀ y ; ∃ x ; p(x , y)
∃ x ; ∀ y ; p(x , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∀-left: free to substitute arbitrary term (of right type) for y , choose d

Wolfgang Ahrendt VSTA 2024 (2) 33

Proving Validity of First-Order Formulas Cont’d

Example (A simple theorem about binary relations)

∗

p(c, d), ∀ y ; p(c , y) =⇒ p(c , d), ∃ x ; p(x , d)
p(c , d), ∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)
∀ y ; p(c , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∃ x ; ∀ y ; p(x , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∃-right: free to substitute arbitrary term (of right type) for x , choose c

Wolfgang Ahrendt VSTA 2024 (2) 33

Proving Validity of First-Order Formulas Cont’d

Example (A simple theorem about binary relations)

∗
p(c, d), ∀ y ; p(c , y) =⇒ p(c , d), ∃ x ; p(x , d)

p(c , d), ∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)
∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∀ y ; ∃ x ; p(x , y)
∃ x ; ∀ y ; p(x , y) =⇒ ∀ y ; ∃ x ; p(x , y)

Close

Wolfgang Ahrendt VSTA 2024 (2) 33

Proving Validity of First-Order Formulas Cont’d

Example (A simple theorem about binary relations)

∗
p(c, d), ∀ y ; p(c , y) =⇒ p(c , d), ∃ x ; p(x , d)

p(c , d), ∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)
∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∀ y ; ∃ x ; p(x , y)
∃ x ; ∀ y ; p(x , y) =⇒ ∀ y ; ∃ x ; p(x , y)

Demo
relSimple.key

Wolfgang Ahrendt VSTA 2024 (2) 33

Proving Validity of First-Order Formulas Cont’d

Using an existentially quantified formula

Let x , y denote integer constants, both are not zero. We know further that x divides y .

Show: (y/x) ∗ x = y
(equation not always true in integer division, e.g., y = 1, x = 2)
Proof: We know x divides y , i.e. there exists a k such that y = k ∗ x . Let now c denote such
a k. Hence we can replace y by c ∗ x on the right side. . . .

∗
...

¬(x = 0),¬(y = 0), y = c ∗ x =⇒ ((c ∗ x)/x) ∗ x = y

¬(x = 0),¬(y = 0), y = c ∗ x =⇒ (y/x) ∗ x = y

¬(x = 0),¬(y = 0),∃ int k ; y = k ∗ x

=⇒

(y/x) ∗ x = y

Wolfgang Ahrendt VSTA 2024 (2) 34

Proving Validity of First-Order Formulas Cont’d

Using an existentially quantified formula

Let x , y denote integer constants, both are not zero.

We know further that x divides y .

Show: (y/x) ∗ x = y
(equation not always true in integer division, e.g., y = 1, x = 2)
Proof: We know x divides y , i.e. there exists a k such that y = k ∗ x . Let now c denote such
a k. Hence we can replace y by c ∗ x on the right side. . . .

∗
...

¬(x = 0),¬(y = 0), y = c ∗ x =⇒ ((c ∗ x)/x) ∗ x = y

¬(x = 0),¬(y = 0), y = c ∗ x =⇒ (y/x) ∗ x = y

¬(x = 0),¬(y = 0)

,∃ int k ; y = k ∗ x

=⇒

(y/x) ∗ x = y

Wolfgang Ahrendt VSTA 2024 (2) 34

Proving Validity of First-Order Formulas Cont’d

Using an existentially quantified formula

Let x , y denote integer constants, both are not zero. We know further that x divides y .

Show: (y/x) ∗ x = y
(equation not always true in integer division, e.g., y = 1, x = 2)
Proof: We know x divides y , i.e. there exists a k such that y = k ∗ x . Let now c denote such
a k. Hence we can replace y by c ∗ x on the right side. . . .

∗
...

¬(x = 0),¬(y = 0), y = c ∗ x =⇒ ((c ∗ x)/x) ∗ x = y

¬(x = 0),¬(y = 0), y = c ∗ x =⇒ (y/x) ∗ x = y

¬(x = 0),¬(y = 0),∃ int k ; y = k ∗ x =⇒

(y/x) ∗ x = y

Wolfgang Ahrendt VSTA 2024 (2) 34

Proving Validity of First-Order Formulas Cont’d

Using an existentially quantified formula

Let x , y denote integer constants, both are not zero. We know further that x divides y .
Show: (y/x) ∗ x = y
(equation not always true in integer division, e.g., y = 1, x = 2)

Proof: We know x divides y , i.e. there exists a k such that y = k ∗ x . Let now c denote such
a k. Hence we can replace y by c ∗ x on the right side. . . .

∗
...

¬(x = 0),¬(y = 0), y = c ∗ x =⇒ ((c ∗ x)/x) ∗ x = y

¬(x = 0),¬(y = 0), y = c ∗ x =⇒ (y/x) ∗ x = y

¬(x = 0),¬(y = 0),∃ int k ; y = k ∗ x =⇒ (y/x) ∗ x = y

Wolfgang Ahrendt VSTA 2024 (2) 34

Proving Validity of First-Order Formulas Cont’d

Using an existentially quantified formula

Let x , y denote integer constants, both are not zero. We know further that x divides y .
Show: (y/x) ∗ x = y
(equation not always true in integer division, e.g., y = 1, x = 2)
Proof: We know x divides y , i.e. there exists a k such that y = k ∗ x . Let now c denote such
a k.

Hence we can replace y by c ∗ x on the right side. . . .

∗
...

¬(x = 0),¬(y = 0), y = c ∗ x =⇒ ((c ∗ x)/x) ∗ x = y

¬(x = 0),¬(y = 0), y = c ∗ x =⇒ (y/x) ∗ x = y

¬(x = 0),¬(y = 0),∃ int k ; y = k ∗ x =⇒ (y/x) ∗ x = y

Wolfgang Ahrendt VSTA 2024 (2) 34

Proving Validity of First-Order Formulas Cont’d

Using an existentially quantified formula

Let x , y denote integer constants, both are not zero. We know further that x divides y .
Show: (y/x) ∗ x = y
(equation not always true in integer division, e.g., y = 1, x = 2)
Proof: We know x divides y , i.e. there exists a k such that y = k ∗ x . Let now c denote such
a k. Hence we can replace y by c ∗ x on the right side.

. . .

∗
...

¬(x = 0),¬(y = 0), y = c ∗ x =⇒ ((c ∗ x)/x) ∗ x = y

¬(x = 0),¬(y = 0), y = c ∗ x =⇒ (y/x) ∗ x = y

¬(x = 0),¬(y = 0),∃ int k ; y = k ∗ x =⇒ (y/x) ∗ x = y

Wolfgang Ahrendt VSTA 2024 (2) 34

Proving Validity of First-Order Formulas Cont’d

Using an existentially quantified formula

Let x , y denote integer constants, both are not zero. We know further that x divides y .
Show: (y/x) ∗ x = y
(equation not always true in integer division, e.g., y = 1, x = 2)
Proof: We know x divides y , i.e. there exists a k such that y = k ∗ x . Let now c denote such
a k. Hence we can replace y by c ∗ x on the right side. . . .

∗
...

¬(x = 0),¬(y = 0), y = c ∗ x =⇒ ((c ∗ x)/x) ∗ x = y

¬(x = 0),¬(y = 0), y = c ∗ x =⇒ (y/x) ∗ x = y

¬(x = 0),¬(y = 0),∃ int k ; y = k ∗ x =⇒ (y/x) ∗ x = y

Wolfgang Ahrendt VSTA 2024 (2) 34

Features of the KeY Theorem Prover

Demo
rel.key, twoInstances.key

Feature List

▶ Can work on multiple proofs simultaneously (task list)

▶ Point-and-click navigation within proof

▶ Undo proof steps, prune proof trees

▶ Pop-up menu with proof rules applicable in pointer focus

▶ Preview of rule effect as tool tip

▶ Quantifier instantiation and equality rules by drag-and-drop

▶ Possible to hide (and unhide) parts of a sequent

▶ Saving and loading of proofs

Wolfgang Ahrendt VSTA 2024 (2) 35

Part III

Java Dynamic Logic

Wolfgang Ahrendt VSTA 2024 (2) 36

Java DL Example Formulas

(balance ≥ c ∧ amount > 0) → ⟨charge(amount);⟩ balance > c

o1.f < o2.f → [t=o1.f; o1.f=o2.f; o2.f=t;] o2.f < o1.f

o1.f > 0 → [o1.f=o1.f+o2.f; o2.f=o1.f-o2.f; o1.f=o1.f-o2.f;] o2.f > 0

Last formula not valid: If o1 = o2 in prestate, then o2.f = 0 in poststate.

Symbolic execution must take possible aliasing into account.

Wolfgang Ahrendt VSTA 2024 (2) 37

Java DL Example Formulas

(balance ≥ c ∧ amount > 0) → ⟨charge(amount);⟩ balance > c

o1.f < o2.f → [t=o1.f; o1.f=o2.f; o2.f=t;] o2.f < o1.f

o1.f > 0 → [o1.f=o1.f+o2.f; o2.f=o1.f-o2.f; o1.f=o1.f-o2.f;] o2.f > 0

Last formula not valid: If o1 = o2 in prestate, then o2.f = 0 in poststate.

Symbolic execution must take possible aliasing into account.

Wolfgang Ahrendt VSTA 2024 (2) 37

Java DL Example Formulas

(balance ≥ c ∧ amount > 0) → ⟨charge(amount);⟩ balance > c

o1.f < o2.f → [t=o1.f; o1.f=o2.f; o2.f=t;] o2.f < o1.f

o1.f > 0 → [o1.f=o1.f+o2.f; o2.f=o1.f-o2.f; o1.f=o1.f-o2.f;] o2.f > 0

Last formula not valid: If o1 = o2 in prestate, then o2.f = 0 in poststate.

Symbolic execution must take possible aliasing into account.

Wolfgang Ahrendt VSTA 2024 (2) 37

Java DL Example Formulas

(balance ≥ c ∧ amount > 0) → ⟨charge(amount);⟩ balance > c

o1.f < o2.f → [t=o1.f; o1.f=o2.f; o2.f=t;] o2.f < o1.f

o1.f > 0 → [o1.f=o1.f+o2.f; o2.f=o1.f-o2.f; o1.f=o1.f-o2.f;] o2.f > 0

Last formula not valid: If o1 = o2 in prestate, then o2.f = 0 in poststate.

Symbolic execution must take possible aliasing into account.

Wolfgang Ahrendt VSTA 2024 (2) 37

Java DL Example Formulas

(balance ≥ c ∧ amount > 0) → ⟨charge(amount);⟩ balance > c

o1.f < o2.f → [t=o1.f; o1.f=o2.f; o2.f=t;] o2.f < o1.f

o1.f > 0 → [o1.f=o1.f+o2.f; o2.f=o1.f-o2.f; o1.f=o1.f-o2.f;] o2.f > 0

Last formula not valid: If o1 = o2 in prestate, then o2.f = 0 in poststate.

Symbolic execution must take possible aliasing into account.

Wolfgang Ahrendt VSTA 2024 (2) 37

Java DL Example Formula

∀ int x ;
(n = x ∧ x >= 0 →
[i = 0; r = 0;

while (i<n) { i = i + 1; r = r + i;}
r=r+r-n;

] r = x ∗ x)

Wolfgang Ahrendt VSTA 2024 (2) 38

Java DL Example Formula (in ASCII)

a != null

->

<

int max = 0;

if (a.length > 0) max = a[0];

int i = 1;

while (i < a.length) {

if (a[i] > max) max = a[i];

++i;

}

>

\forall int j; (j >= 0 & j < a.length -> max >= a[j])

&

(a.length > 0 ->

\exists int j; (j >= 0 & j < a.length & max = a[j]))

Wolfgang Ahrendt VSTA 2024 (2) 39

Assignment Rule Using Updates

Symbolic execution of assignment using updates

assign
Γ =⇒ U{x := t}⟨rest ⟩φ,∆
Γ =⇒ U⟨x := t; rest ⟩φ,∆

t simple

▶ U : (nested) updates
▶ t simple: no side effects, no exceptions

Wolfgang Ahrendt VSTA 2024 (2) 40

Java DL Rules

Example rule

if
Γ,U(b = true) =⇒ U⟨p; rest ⟩φ,∆ Γ,U(b = false) =⇒ U⟨q; rest ⟩φ,∆

Γ =⇒ U⟨ if (b) { p } else { q } ; rest ⟩φ,∆
b simple

Symbolic execution must consider all possible execution branches

Wolfgang Ahrendt VSTA 2024 (2) 41

Java Dynamic Logic

Reasoning about Java programs requires extensions of FOL

▶ Java type hierarchy

▶ Java program variables

▶ Java heap for reference types

Wolfgang Ahrendt VSTA 2024 (2) 42

Type Hierarchy

Definition (Type Hierarchy)

▶ TΣ is set of types
▶ Subtype relation ⊑ ⊆ TΣ × TΣ with top element ⊤

▶ τ ⊑ ⊤ for all τ ∈ TΣ

Wolfgang Ahrendt VSTA 2024 (2) 43

Modelling Java in FOL: Fixing a Type Hierarchy

TΣ based on Java’s type hierarchy (sketch)

⊤

Heap Field

any

booleanint Object

classes + interfaces + array types

Null

Wolfgang Ahrendt VSTA 2024 (2) 44

Modelling Java in FOL: Fixing a Type Hierarchy

TΣ based on Java’s type hierarchy (sketch)

⊤

Heap Field

any

booleanint Object

classes + interfaces + array types

Null

Wolfgang Ahrendt VSTA 2024 (2) 45

Modelling the Heap in FOL

The Java Heap

Objects are stored on (i.e., in) the heap.

▶ Status of heap changes during execution

▶ Each heap associates values to object/field pairs

The Heap Model of KeY-DL

Each element of data type Heap represents a certain heap status.
Two functions involving heaps:

▶ in FΣ: Heap store(Heap, Object, Field, any);
store(h, o, f , v) returns heap like h, but with v associated to o.f

▶ in FΣ: any select(Heap, Object, Field);
select(h, o, f) returns value associated to o.f in h

Wolfgang Ahrendt VSTA 2024 (2) 46

Modelling the Heap in FOL

The Java Heap

Objects are stored on (i.e., in) the heap.

▶ Status of heap changes during execution

▶ Each heap associates values to object/field pairs

The Heap Model of KeY-DL

Each element of data type Heap represents a certain heap status.
Two functions involving heaps:

▶ in FΣ: Heap store(Heap, Object, Field, any);
store(h, o, f , v) returns heap like h, but with v associated to o.f

▶ in FΣ: any select(Heap, Object, Field);
select(h, o, f) returns value associated to o.f in h

Wolfgang Ahrendt VSTA 2024 (2) 46

Modelling the Heap in FOL

The Java Heap

Objects are stored on (i.e., in) the heap.

▶ Status of heap changes during execution

▶ Each heap associates values to object/field pairs

The Heap Model of KeY-DL

Each element of data type Heap represents a certain heap status.
Two functions involving heaps:

▶ in FΣ: Heap store(Heap, Object, Field, any);
store(h, o, f , v) returns heap like h, but with v associated to o.f

▶ in FΣ: any select(Heap, Object, Field);
select(h, o, f) returns value associated to o.f in h

Wolfgang Ahrendt VSTA 2024 (2) 46

Modelling the Heap in FOL

The Java Heap

Objects are stored on (i.e., in) the heap.

▶ Status of heap changes during execution

▶ Each heap associates values to object/field pairs

The Heap Model of KeY-DL

Each element of data type Heap represents a certain heap status.
Two functions involving heaps:

▶ in FΣ: Heap store(Heap, Object, Field, any);
store(h, o, f , v) returns heap like h, but with v associated to o.f

▶ in FΣ: any select(Heap, Object, Field);
select(h, o, f) returns value associated to o.f in h

Wolfgang Ahrendt VSTA 2024 (2) 46

Modelling the Heap in FOL

Modelling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

▶ for each Java reference type C there is a type C ∈ TΣ,
e.g., Person

▶ for each field f there is a unique constant f of type
Field, e.g., id

▶ heap maps pair (object, field) to value

Reading Field id of Person p

FOL notation select(h, p, id)

KeY notation p.id@h (abbreviating select(h, p, id))
p.id (abbreviating select(heap, p, id))a

aheap is special program variable for “current” heap; mostly implicit in o.f

Wolfgang Ahrendt VSTA 2024 (2) 47

Modelling the Heap in FOL

Modelling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

▶ for each Java reference type C there is a type C ∈ TΣ,
e.g., Person

▶ for each field f there is a unique constant f of type
Field, e.g., id

▶ heap maps pair (object, field) to value

Reading Field id of Person p

FOL notation select(h, p, id)

KeY notation p.id@h (abbreviating select(h, p, id))
p.id (abbreviating select(heap, p, id))a

aheap is special program variable for “current” heap; mostly implicit in o.f

Wolfgang Ahrendt VSTA 2024 (2) 47

Modelling the Heap in FOL

Modelling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

▶ for each Java reference type C there is a type C ∈ TΣ,
e.g., Person

▶ for each field f there is a unique constant f of type
Field, e.g., id

▶ heap maps pair (object, field) to value

Reading Field id of Person p

FOL notation select(h, p, id)

KeY notation p.id@h (abbreviating select(h, p, id))
p.id (abbreviating select(heap, p, id))a

aheap is special program variable for “current” heap; mostly implicit in o.f

Wolfgang Ahrendt VSTA 2024 (2) 47

Modelling the Heap in FOL

Modelling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

▶ for each Java reference type C there is a type C ∈ TΣ,
e.g., Person

▶ for each field f there is a unique constant f of type
Field, e.g., id

▶ heap maps pair (object, field) to value

Reading Field id of Person p

FOL notation select(h, p, id)

KeY notation p.id@h (abbreviating select(h, p, id))
p.id (abbreviating select(heap, p, id))a

aheap is special program variable for “current” heap; mostly implicit in o.f

Wolfgang Ahrendt VSTA 2024 (2) 47

Modelling the Heap in FOL

Modelling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

▶ for each Java reference type C there is a type C ∈ TΣ,
e.g., Person

▶ for each field f there is a unique constant f of type
Field, e.g., id

▶ heap maps pair (object, field) to value

Reading Field id of Person p

FOL notation select(h, p, id)

KeY notation p.id@h (abbreviating select(h, p, id))

p.id (abbreviating select(heap, p, id))a

aheap is special program variable for “current” heap; mostly implicit in o.f

Wolfgang Ahrendt VSTA 2024 (2) 47

Modelling the Heap in FOL

Modelling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

▶ for each Java reference type C there is a type C ∈ TΣ,
e.g., Person

▶ for each field f there is a unique constant f of type
Field, e.g., id

▶ heap maps pair (object, field) to value

Reading Field id of Person p

FOL notation select(h, p, id)

KeY notation p.id@h (abbreviating select(h, p, id))
p.id (abbreviating select(heap, p, id))a

aheap is special program variable for “current” heap; mostly implicit in o.f

Wolfgang Ahrendt VSTA 2024 (2) 47

Modelling the Heap in FOL

Modelling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

▶ for each Java reference type C there is a type C ∈ TΣ,
e.g., Person

▶ for each field f there is a unique constant f of type
Field, e.g., id

▶ heap maps pair (object, field) to value

Writing to Field id of Person p

FOL notation store(h, p, id, 6238)

KeY notation h[p.id := 6238] (notation for store, not update)

Wolfgang Ahrendt VSTA 2024 (2) 48

Modelling the Heap in FOL

Modelling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

▶ for each Java reference type C there is a type C ∈ TΣ,
e.g., Person

▶ for each field f there is a unique constant f of type
Field, e.g., id

▶ heap maps pair (object, field) to value

Writing to Field id of Person p

FOL notation store(h, p, id, 6238)

KeY notation h[p.id := 6238] (notation for store, not update)

Wolfgang Ahrendt VSTA 2024 (2) 48

The Algebra of Heaps

We do not formalise the structure (implementation) of heaps.
We formalise the behaviour, with an algebra of heap operations:

select(store(h, o, f , v), o, f) =

v

(o ̸= o ′ ∨ f ̸= f ′) → select(store(h, o, f , x), o ′, f ′) = select(h, o ′, f ′)

Example

select(store(h, o, f, 15), o, f)⇝

15

select(store(h, o, f, 15), o, g)⇝

select(h, o, g)

select(store(h, o, f, 15), u, f)⇝

if (o = u) then 15 else select(h, u, f)

Wolfgang Ahrendt VSTA 2024 (2) 49

The Algebra of Heaps

We do not formalise the structure (implementation) of heaps.
We formalise the behaviour, with an algebra of heap operations:

select(store(h, o, f , v), o, f) = v

(o ̸= o ′ ∨ f ̸= f ′) → select(store(h, o, f , x), o ′, f ′) = select(h, o ′, f ′)

Example

select(store(h, o, f, 15), o, f)⇝

15

select(store(h, o, f, 15), o, g)⇝

select(h, o, g)

select(store(h, o, f, 15), u, f)⇝

if (o = u) then 15 else select(h, u, f)

Wolfgang Ahrendt VSTA 2024 (2) 49

The Algebra of Heaps

We do not formalise the structure (implementation) of heaps.
We formalise the behaviour, with an algebra of heap operations:

select(store(h, o, f , v), o, f) = v

(o ̸= o ′ ∨ f ̸= f ′) → select(store(h, o, f , x), o ′, f ′) =

select(h, o ′, f ′)

Example

select(store(h, o, f, 15), o, f)⇝

15

select(store(h, o, f, 15), o, g)⇝

select(h, o, g)

select(store(h, o, f, 15), u, f)⇝

if (o = u) then 15 else select(h, u, f)

Wolfgang Ahrendt VSTA 2024 (2) 49

The Algebra of Heaps

We do not formalise the structure (implementation) of heaps.
We formalise the behaviour, with an algebra of heap operations:

select(store(h, o, f , v), o, f) = v

(o ̸= o ′ ∨ f ̸= f ′) → select(store(h, o, f , x), o ′, f ′) = select(h, o ′, f ′)

Example

select(store(h, o, f, 15), o, f)⇝

15

select(store(h, o, f, 15), o, g)⇝

select(h, o, g)

select(store(h, o, f, 15), u, f)⇝

if (o = u) then 15 else select(h, u, f)

Wolfgang Ahrendt VSTA 2024 (2) 49

The Algebra of Heaps

We do not formalise the structure (implementation) of heaps.
We formalise the behaviour, with an algebra of heap operations:

select(store(h, o, f , v), o, f) = v

(o ̸= o ′ ∨ f ̸= f ′) → select(store(h, o, f , x), o ′, f ′) = select(h, o ′, f ′)

Example

select(store(h, o, f, 15), o, f)⇝

15

select(store(h, o, f, 15), o, g)⇝

select(h, o, g)

select(store(h, o, f, 15), u, f)⇝

if (o = u) then 15 else select(h, u, f)

Wolfgang Ahrendt VSTA 2024 (2) 49

The Algebra of Heaps

We do not formalise the structure (implementation) of heaps.
We formalise the behaviour, with an algebra of heap operations:

select(store(h, o, f , v), o, f) = v

(o ̸= o ′ ∨ f ̸= f ′) → select(store(h, o, f , x), o ′, f ′) = select(h, o ′, f ′)

Example

select(store(h, o, f, 15), o, f)⇝ 15

select(store(h, o, f, 15), o, g)⇝

select(h, o, g)

select(store(h, o, f, 15), u, f)⇝

if (o = u) then 15 else select(h, u, f)

Wolfgang Ahrendt VSTA 2024 (2) 49

The Algebra of Heaps

We do not formalise the structure (implementation) of heaps.
We formalise the behaviour, with an algebra of heap operations:

select(store(h, o, f , v), o, f) = v

(o ̸= o ′ ∨ f ̸= f ′) → select(store(h, o, f , x), o ′, f ′) = select(h, o ′, f ′)

Example

select(store(h, o, f, 15), o, f)⇝ 15

select(store(h, o, f, 15), o, g)⇝ select(h, o, g)
select(store(h, o, f, 15), u, f)⇝

if (o = u) then 15 else select(h, u, f)

Wolfgang Ahrendt VSTA 2024 (2) 49

The Algebra of Heaps

We do not formalise the structure (implementation) of heaps.
We formalise the behaviour, with an algebra of heap operations:

select(store(h, o, f , v), o, f) = v

(o ̸= o ′ ∨ f ̸= f ′) → select(store(h, o, f , x), o ′, f ′) = select(h, o ′, f ′)

Example

select(store(h, o, f, 15), o, f)⇝ 15

select(store(h, o, f, 15), o, g)⇝ select(h, o, g)
select(store(h, o, f, 15), u, f)⇝

if (o = u) then 15 else select(h, u, f)

Wolfgang Ahrendt VSTA 2024 (2) 49

Pretty Printing

Shorthand Notations for Heap Operations

o.f@h is select(h, o, f)
h[o.f := v] is store(h, o, f, v)

therefore:

u.f@h[o.f := v] is select(store(h, o, f, v), u, f)
h[o.f := v][o′.f′ := v′] is store(store(h, o, f, v), o′, f′, v′)

Very-Shorthand Notations for Current Heap

Current heap always in special variable heap.
o.f is select(heap, o, f)
{o.f := v} is update {heap := heap[o.f := v]}

Wolfgang Ahrendt VSTA 2024 (2) 50

Pretty Printing

Shorthand Notations for Heap Operations

o.f@h is select(h, o, f)
h[o.f := v] is store(h, o, f, v)

therefore:

u.f@h[o.f := v] is select(store(h, o, f, v), u, f)
h[o.f := v][o′.f′ := v′] is store(store(h, o, f, v), o′, f′, v′)

Very-Shorthand Notations for Current Heap

Current heap always in special variable heap.
o.f is select(heap, o, f)
{o.f := v} is update {heap := heap[o.f := v]}

Wolfgang Ahrendt VSTA 2024 (2) 50

Pretty Printing

Shorthand Notations for Heap Operations

o.f@h is select(h, o, f)
h[o.f := v] is store(h, o, f, v)

therefore:

u.f@h[o.f := v] is select(store(h, o, f, v), u, f)
h[o.f := v][o′.f′ := v′] is store(store(h, o, f, v), o′, f′, v′)

Very-Shorthand Notations for Current Heap

Current heap always in special variable heap.
o.f is select(heap, o, f)
{o.f := v} is update {heap := heap[o.f := v]}

Wolfgang Ahrendt VSTA 2024 (2) 50

Field Update Assignment Rule

Changing the value of fields

How to (symbolically) execute assignment to field, e.g., p.age=18; ?

assign
Γ =⇒ {o.f := t}⟨rest ⟩φ,∆
Γ =⇒ ⟨o.f = t; rest ⟩φ,∆

Admit on left-hand side of update Java location expressions

But is this rule correct? See below.

Wolfgang Ahrendt VSTA 2024 (2) 51

Field Update Assignment Rule

Changing the value of fields

How to (symbolically) execute assignment to field, e.g., p.age=18; ?

assign
Γ =⇒ {p.age := 18}⟨rest ⟩φ,∆
Γ =⇒ ⟨p.age = 18; rest ⟩φ,∆

Admit on left-hand side of update Java location expressions

But is this rule correct? See below.

Wolfgang Ahrendt VSTA 2024 (2) 51

Field Update Assignment Rule

Changing the value of fields

How to (symbolically) execute assignment to field, e.g., p.age=18; ?

assign
Γ =⇒ {o.f := t}⟨rest ⟩φ,∆
Γ =⇒ ⟨o.f = t; rest ⟩φ,∆

Admit on left-hand side of update Java location expressions

But is this rule correct? See below.

Wolfgang Ahrendt VSTA 2024 (2) 51

Dynamic Logic: KeY input file

\javaSource "path to source code referenced in problem ";

\programVariables { Person p; }

\problem {

\<{ p.age = 18; }\> p.age = 18

}

KeY reads in all source files and creates automatically
the necessary signature (types, program variables, field constants)

Demo
updates/firstAttributeExample.key

Wolfgang Ahrendt VSTA 2024 (2) 52

Dynamic Logic: KeY input file

\javaSource "path to source code referenced in problem ";

\programVariables { Person p; }

\problem {

\<{ p.age = 18; }\> p.age = 18

}

KeY reads in all source files and creates automatically
the necessary signature (types, program variables, field constants)

Demo
updates/firstAttributeExample.key

Wolfgang Ahrendt VSTA 2024 (2) 52

Refined Semantics of Program Modalities

Does abrupt termination count as normal termination?
No! Need to distinguish normal and exceptional termination

▶ ⟨p⟩φ: p terminates normally and formula φ holds in final state
(total correctness)

▶ [p]φ: If p terminates normally then formula φ holds in final state
(partial correctness)

Abrupt termination on top-level counts as non-termination!

Wolfgang Ahrendt VSTA 2024 (2) 53

Refined Semantics of Program Modalities

Does abrupt termination count as normal termination?
No! Need to distinguish normal and exceptional termination

▶ ⟨p⟩φ: p terminates normally and formula φ holds in final state
(total correctness)

▶ [p]φ: If p terminates normally then formula φ holds in final state
(partial correctness)

Abrupt termination on top-level counts as non-termination!

Wolfgang Ahrendt VSTA 2024 (2) 53

Refined Semantics of Program Modalities

Does abrupt termination count as normal termination?
No! Need to distinguish normal and exceptional termination

▶ ⟨p⟩φ: p terminates normally and formula φ holds in final state
(total correctness)

▶ [p]φ: If p terminates normally then formula φ holds in final state
(partial correctness)

Abrupt termination on top-level counts as non-termination!

Wolfgang Ahrendt VSTA 2024 (2) 53

Refined Semantics of Program Modalities

Does abrupt termination count as normal termination?
No! Need to distinguish normal and exceptional termination

▶ ⟨p⟩φ: p terminates normally and formula φ holds in final state
(total correctness)

▶ [p]φ: If p terminates normally then formula φ holds in final state
(partial correctness)

Abrupt termination on top-level counts as non-termination!

Wolfgang Ahrendt VSTA 2024 (2) 53

Example Reconsidered: Exception Handling

\javaSource "path to source code ";

\programVariables {

...

}

\problem {

p != null -> \<{ p.age = 18; }\> p.age = 18

}

Only provable when no top-level exception is thrown

Demo
updates/secondAttributeExample.key

Wolfgang Ahrendt VSTA 2024 (2) 54

Which Objects do Exist?

How to model object creation with new ?

Constant Domain Assumption

Assume that domain D is the same in all states (D, δ, I) ∈ States

Consequence:
Quantifiers and modalities commute:

|= (∀T x ; [p]φ) ↔ [p](∀T x ; φ)

Wolfgang Ahrendt VSTA 2024 (2) 55

Which Objects do Exist?

How to model object creation with new ?

Constant Domain Assumption

Assume that domain D is the same in all states (D, δ, I) ∈ States

Consequence:
Quantifiers and modalities commute:

|= (∀T x ; [p]φ) ↔ [p](∀T x ; φ)

Wolfgang Ahrendt VSTA 2024 (2) 55

Object Creation

Realizing Constant Domain Assumption

▶ Implicitly declared field boolean <created> in class Object

▶ <created> has value true iff argument object has been created

▶ Object creation modeled as {heap := create(heap, ob)} for not (yet) created ob

(essentially sets <created> field of ob to true)

Γ, ob.<created> = FALSE =⇒
{heap :=create(heap, ob)}{o :=ob}⟨o.<init>(param);ω⟩φ, ∆

Γ =⇒ ⟨o = new T(param); ω⟩φ,∆

ob is a fresh program variable

Alternatives exisit in the literature. E.g.:
[Ahrendt, de Boer, Grabe, Abstract Object Creation in Dynamic Logic – To Be or Not To Be
Created, Springer, LNCS 5850]

Wolfgang Ahrendt VSTA 2024 (2) 56

Object Creation

Realizing Constant Domain Assumption

▶ Implicitly declared field boolean <created> in class Object

▶ <created> has value true iff argument object has been created

▶ Object creation modeled as {heap := create(heap, ob)} for not (yet) created ob

(essentially sets <created> field of ob to true)

Γ, ob.<created> = FALSE =⇒
{heap :=create(heap, ob)}{o :=ob}⟨o.<init>(param);ω⟩φ, ∆

Γ =⇒ ⟨o = new T(param); ω⟩φ,∆

ob is a fresh program variable

Alternatives exisit in the literature. E.g.:
[Ahrendt, de Boer, Grabe, Abstract Object Creation in Dynamic Logic – To Be or Not To Be
Created, Springer, LNCS 5850]

Wolfgang Ahrendt VSTA 2024 (2) 56

Object Creation

Realizing Constant Domain Assumption

▶ Implicitly declared field boolean <created> in class Object

▶ <created> has value true iff argument object has been created

▶ Object creation modeled as {heap := create(heap, ob)} for not (yet) created ob

(essentially sets <created> field of ob to true)

Γ, ob.<created> = FALSE =⇒
{heap :=create(heap, ob)}{o :=ob}⟨o.<init>(param);ω⟩φ, ∆

Γ =⇒ ⟨o = new T(param); ω⟩φ,∆

ob is a fresh program variable

Alternatives exisit in the literature. E.g.:
[Ahrendt, de Boer, Grabe, Abstract Object Creation in Dynamic Logic – To Be or Not To Be
Created, Springer, LNCS 5850]

Wolfgang Ahrendt VSTA 2024 (2) 56

Type Hierarchy

Modeling OO Programs

Object Creation

Round Tour
Java Coverage
Arrays
Side Effects
Abrupt Termination
Null Pointers
Aliasing

Wolfgang Ahrendt VSTA 2024 (2) 57

Dynamic Logic to (almost) full Java

KeY supports full sequential Java, with some limitations:

▶ No concurrency

▶ No generics

▶ No I/O

▶ No dynamic class loading or reflection

▶ API method calls: need either JML contract or implementation

▶ Recently added: support for floating-point numbers/arithemic

Wolfgang Ahrendt VSTA 2024 (2) 58

Dynamic Logic to (almost) full Java

KeY supports full sequential Java, with some limitations:

▶ No concurrency

▶ No generics

▶ No I/O

▶ No dynamic class loading or reflection

▶ API method calls: need either JML contract or implementation

▶ Recently added: support for floating-point numbers/arithemic

Wolfgang Ahrendt VSTA 2024 (2) 58

Java Features in Dynamic Logic: Arrays

Arrays

Object

Object[]

Object[][]

▶ Java type hierarchy includes array types

▶ Types ordered according to Java subtyping rules

▶ Function arr : int → Field turns integer index into type Field (required
in store).

▶ Store array elements on heap

▶ Value of a[i] in heap store(heap, a, arr(i), 8) is 8

▶ Arrays a and b can refer to same object (aliasing)

Wolfgang Ahrendt VSTA 2024 (2) 59

Java Features in Dynamic Logic:
Complex Expressions

Complex expressions with side effects

▶ Java expressions may have side effects, due to method calls, increment/decrement
operators, nested assignments

▶ FOL terms have no side effect on the state

Example (Complex expression with side effects in Java)

int i = 0; if ((i=2)>= 2) i++; value of i ?

Wolfgang Ahrendt VSTA 2024 (2) 60

Complex Expressions Cont’d

Decomposition of complex terms by symbolic execution

Follow the rules laid down in Java Language Specification

Local code transformations

evalOrderIteratedAssgnmt
Γ =⇒ ⟨y = t; x = y; ω⟩φ,∆
Γ =⇒ ⟨x = y = t; ω⟩φ,∆

t simple

Temporary variables store result of evaluating subexpression

ifEval
Γ =⇒ ⟨boolean v0; v0 = b; if (v0) p; ω⟩φ,∆

Γ =⇒ ⟨if (b) p; ω⟩φ,∆
b complex

Wolfgang Ahrendt VSTA 2024 (2) 61

Java Features in Dynamic Logic:
Abrupt Termination

Abrupt Termination: Exceptions and Jumps

Redirection of control flow via return, break, continue, exceptions

⟨try {p} catch(T e) {q} finally {r} ω⟩φ

Rule tryThrow matches try–catch in pre-/postfix and active throw

=⇒⟨if(e instanceof T){try{x=e;q}finally{r}}else{r;throw e;}ω⟩φ
=⇒ ⟨try { throw e; p} catch(T x) {q} finally {r} ω⟩φ

Demo

exceptions/try-catch.key (inspect file, auto-prove, inspect proof)

Wolfgang Ahrendt VSTA 2024 (2) 62

Java Features in Dynamic Logic:
Abrupt Termination

Abrupt Termination: Exceptions and Jumps

Redirection of control flow via return, break, continue, exceptions

⟨try {p} catch(T e) {q} finally {r} ω⟩φ

Rule tryThrow matches try–catch in pre-/postfix and active throw

=⇒⟨if(e instanceof T){try{x=e;q}finally{r}}else{r;throw e;}ω⟩φ
=⇒ ⟨try { throw e; p} catch(T x) {q} finally {r} ω⟩φ

Demo

exceptions/try-catch.key (inspect file, auto-prove, inspect proof)

Wolfgang Ahrendt VSTA 2024 (2) 62

Java Features in Dynamic Logic:
Abrupt Termination

Abrupt Termination: Exceptions and Jumps

Redirection of control flow via return, break, continue, exceptions

⟨try {p} catch(T e) {q} finally {r} ω⟩φ

Rule tryThrow matches try–catch in pre-/postfix and active throw

=⇒⟨if(e instanceof T){try{x=e;q}finally{r}}else{r;throw e;}ω⟩φ
=⇒ ⟨try { throw e; p} catch(T x) {q} finally {r} ω⟩φ

Demo

exceptions/try-catch.key (inspect file, auto-prove, inspect proof)

Wolfgang Ahrendt VSTA 2024 (2) 62

Java Features in Dynamic Logic: Null

Null pointer exceptions

There are no “exceptions” in FOL: interpretations I are total

Need to model possibility that o =null in o.a

▶ KeY branches over o =null and o ̸=null upon each field access within modalitiesa

▶ Thereby, o.a appears outside modalities mostly under assumption o ̸=null

▶ null.a outside modalities has a value, which is unknown

aCan be changed with Taclet Option runtimeExceptions

Wolfgang Ahrendt VSTA 2024 (2) 63

Java Features in Dynamic Logic: Null

Null pointer exceptions

There are no “exceptions” in FOL: interpretations I are total

Need to model possibility that o =null in o.a

▶ KeY branches over o =null and o ̸=null upon each field access within modalitiesa

▶ Thereby, o.a appears outside modalities mostly under assumption o ̸=null

▶ null.a outside modalities has a value, which is unknown

aCan be changed with Taclet Option runtimeExceptions

Wolfgang Ahrendt VSTA 2024 (2) 63

Java Features in Dynamic Logic: Null

Null pointer exceptions

There are no “exceptions” in FOL: interpretations I are total

Need to model possibility that o =null in o.a

▶ KeY branches over o =null and o ̸=null upon each field access within modalitiesa

▶ Thereby, o.a appears outside modalities mostly under assumption o ̸=null

▶ null.a outside modalities has a value, which is unknown

aCan be changed with Taclet Option runtimeExceptions

Wolfgang Ahrendt VSTA 2024 (2) 63

Java Features in Dynamic Logic: Null

Null pointer exceptions

There are no “exceptions” in FOL: interpretations I are total

Need to model possibility that o =null in o.a

▶ KeY branches over o =null and o ̸=null upon each field access within modalitiesa

▶ Thereby, o.a appears outside modalities mostly under assumption o ̸=null

▶ null.a outside modalities has a value, which is unknown

aCan be changed with Taclet Option runtimeExceptions

Wolfgang Ahrendt VSTA 2024 (2) 63

Java Features in Dynamic Logic: Null

Null pointer exceptions

There are no “exceptions” in FOL: interpretations I are total

Need to model possibility that o =null in o.a

▶ KeY branches over o =null and o ̸=null upon each field access within modalitiesa

▶ Thereby, o.a appears outside modalities mostly under assumption o ̸=null

▶ null.a outside modalities has a value, which is unknown

aCan be changed with Taclet Option runtimeExceptions

Wolfgang Ahrendt VSTA 2024 (2) 63

Field Update Assignment Rule Revisited (A)

Changing the value of fields

How to (symbolically) execute assignment to field?

Γ,

o ̸= null

=⇒ {o.f := e}⟨

π

ω⟩φ,∆

Γ, o = null =⇒

⟨

π

throw new NullPointerException(); ω⟩φ

,∆

Γ =⇒ ⟨

π

o.f = e; ω⟩φ,∆

π is the “inactive prefix”, any number of opening try blocks: (try{)∗

Wolfgang Ahrendt VSTA 2024 (2) 64

Field Update Assignment Rule Revisited (A)

Changing the value of fields

How to (symbolically) execute assignment to field?

Γ, o ̸= null =⇒ {o.f := e}⟨

π

ω⟩φ,∆

Γ, o = null =⇒

⟨

π

throw new NullPointerException(); ω⟩φ

,∆

Γ =⇒ ⟨

π

o.f = e; ω⟩φ,∆

π is the “inactive prefix”, any number of opening try blocks: (try{)∗

Wolfgang Ahrendt VSTA 2024 (2) 64

Field Update Assignment Rule Revisited (A)

Changing the value of fields

How to (symbolically) execute assignment to field?

Γ, o ̸= null =⇒ {o.f := e}⟨

π

ω⟩φ,∆
Γ, o = null =⇒

⟨

π

throw new NullPointerException(); ω⟩φ

,∆

Γ =⇒ ⟨

π

o.f = e; ω⟩φ,∆

π is the “inactive prefix”, any number of opening try blocks: (try{)∗

Wolfgang Ahrendt VSTA 2024 (2) 64

Field Update Assignment Rule Revisited (A)

Changing the value of fields

How to (symbolically) execute assignment to field?

Γ, o ̸= null =⇒ {o.f := e}⟨

π

ω⟩φ,∆
Γ, o = null =⇒ ⟨

π

throw new NullPointerException(); ω⟩φ,∆
Γ =⇒ ⟨

π

o.f = e; ω⟩φ,∆

π is the “inactive prefix”, any number of opening try blocks: (try{)∗

Wolfgang Ahrendt VSTA 2024 (2) 64

Field Update Assignment Rule Revisited (A)

Changing the value of fields

How to (symbolically) execute assignment to field?

Γ, o ̸= null =⇒ {o.f := e}⟨π ω⟩φ,∆
Γ, o = null =⇒ ⟨π throw new NullPointerException(); ω⟩φ,∆

Γ =⇒ ⟨π o.f = e; ω⟩φ,∆

π is the “inactive prefix”, any number of opening try blocks: (try{)∗

Wolfgang Ahrendt VSTA 2024 (2) 64

Field Update Assignment Rule Revisited (B)

Changing the value of fields

How to (symbolically) execute assignment to field?

Γ =⇒ o = null, {o.f := e}⟨π ω⟩φ,∆
Γ, o = null =⇒ ⟨π throw new NullPointerException(); ω⟩φ,∆

Γ =⇒ ⟨π o.f = e; ω⟩φ,∆

π is the “inactive prefix”, any number of opening try blocks: (try{)∗

Wolfgang Ahrendt VSTA 2024 (2) 65

Revisit: Field Assignment Demo

\javaSource "path to source code referenced in problem ";

\programVariables { Person p; }

\problem {

p != null -> \<{ p.age = 18; }\> p.age = 18

}

Demo
updates/secondAttributeExample.key

Wolfgang Ahrendt VSTA 2024 (2) 66

Java Features in Dynamic Logic: Aliasing

Demo

aliasing/attributeAlias1.key

Reference Aliasing

Alias resolution causes proof split

Wolfgang Ahrendt VSTA 2024 (2) 67

Java Features in Dynamic Logic: Aliasing

Demo

aliasing/attributeAlias1.key

Reference Aliasing

Alias resolution causes proof split

Wolfgang Ahrendt VSTA 2024 (2) 67

	Dynamic Logic at Scale: The KeYsystem
	KeY Prover Intro: First-Order Sequent Calculus
	KeY Theorem Prover

	Java Dynamic Logic
	Type Hierarchy
	Modeling OO Programs
	Object Creation
	Round Tour
	Java Coverage
	Arrays
	Side Effects
	Abrupt Termination
	Null Pointers
	Aliasing

