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Part I

Dynamic Logic at Scale: The KeYsystem
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KeY

KeY is an approach and tool for the

▶ Formal specification

▶ Deductive verification

of

▶ Software source code

using

▶ Dynamic Logic

Versions of KeY support verification of

▶ sequential Java

▶ ABS (executable modelling language for distributed objects)

▶ Solidity (Smart Contracts, work in progress)
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KeY in 30 seconds

▶ Dynamic logic as program logic

▶ Calculus follows symbolic execution paradigm

▶ Sequent calculus

▶ Prover is interactive + automated
▶ most elaborate KeY instance: KeY-Java

▶ Java as target language
▶ Supports specification language JML (Java Modeling Language)
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JML example

/*@ public normal_behavior

@ requires a != null;

@ ensures (\forall int j; j >= 0 && j < a.length;

@ \result >= a[j]);

@ ensures a.length > 0 ==>

@ (\exists int j; j >= 0 && j < a.length;

@ \result == a[j]);

@*/

public static /*@ pure @*/ int max(int[] a) {

int max = a[0], i = 1;

while ( i < a.length ) {

if ( a[i] > max ) max = a[i];

++i;

}

return max;}

Wolfgang Ahrendt VSTA 2024 (2) 6



JML to Dynamic Logic

Major components of KeY-Java
▶ Proof Obligation Generator

▶ input: Java files containing JML specs
▶ output: proof obligations in Dynamic Logic (DL) for Java

▶ KeY Prover
▶ constructing proofs in sequent calculus for DL
▶ designed for interplay of interaction and automated strategies
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Typical KeY Workflow

Theorem Prover
Proof Obligation
Generator DL Formula

Specification

Program

File.java

?
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Dynamic Logic for (almost) full Java

KeY supports full sequential Java, with some limitations:

▶ No generics

▶ No I/O

▶ No dynamic class loading or reflection

▶ API method calls: need either JML contract or implementation

▶ Recently added: support for floating-point numbers/arithemic
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Major Case Study with KeY: Timsort

Timsort

Hybrid sorting algorithm (insertion sort + merge sort) optimised for partially sorted arrays
(typical for real-world data).

Facts

▶ Designed by Tim Peters (for Python)

▶ In Java libraries: default algorithm for non-primitive arrays/collections

Timsort is used in standard libraries of:

▶ Java

▶ Python

▶ Android

▶ Haskell [... and many more languages / frameworks]
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Timsort: People

▶ Tim Peters

▶ Sorting Algorithm Designer

▶ Python Guru

▶ Stijn de Gouw

▶ Postman in the NL

▶ Interested in sorting for professional
reasons

▶ Assistant Professor
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Major Case Study with KeY

Found Bug in Java Libraries’ main Sorting Method using KeY

▶ java.util.Collections.sort and java.util.Arrays.sort

implement Timsort

▶ KeY verification of OpenJDK implementation revealed bug.

▶ Same bug present in Android SDK, Oracle’s JDK, Python library, and ... Haskell library

Verified Fix using KeY

▶ Fixing the (OpenJDK) implementation

▶ Verified new version with KeY (no IndexOutOfBoundsException)
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Congratulations to Stijn de Gouw et al.

for finding and fixing a bug in TimSort

using formal methods!Joshua Bloch via Twitter
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Fixed and Verified the Implementation

Verification with KeY

▶ Adding support for bitwise operations to KeY

▶ 460 lines of specification vs. 928 lines of code

▶ Fixed version formally verified (absence of exceptions)

▶ Whole project 2.5 person month
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Aftermath

▶ Java community choose sub-optimal fix (increasing stack size)

▶ Python community adopted KeYfix
▶ Bug affected

▶ Java
▶ Android
▶ Python
▶ Apache: Lucene, Hadoop, Spark++
▶ Go, D, Haskell

Language Min. array length req. to trigger error

Android 65.536 (216)

Java 67.108.864 (226)

Python 562.949.953.421.312 (249)

▶ blog with >3 million page views

▶ top news on ycombinator, reddit, Hacker News etc.
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Part II

KeY Prover Intro:
First-Order Sequent Calculus
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Motivation for Introducing First-Order Logic

We verify Java programs using First-Order Dynamic Logic

First-order Java DL combines

▶ First-Order Logic (FOL)

▶ Java programs
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First-Order Formulas

Formulas

▶ each atomic formula is a formula

▶ with φ and ψ formulas, x a variable, and τ a type,
the following are also formulas:
▶ ¬φ (“not φ”)
▶ φ ∧ ψ (“φ and ψ”)
▶ φ ∨ ψ (“φ or ψ”)
▶ φ→ ψ (“φ implies ψ”)
▶ φ↔ ψ (“φ is equivalent to ψ”)

▶ ∀ τ x ; φ (“for all x of type τ holds φ”)
▶ ∃ τ x ; φ (“there exists an x of type τ such that φ”)

In ∀ τ x ; φ and ∃ τ x ; φ the variable x is ‘bound’ (i.e., ‘not free’).

Formulas with no free variable are ‘closed’.
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Reasoning by Syntactic Transformation

Prove validity of φ by syntactic transformation of φ

Sequent Calculus based on notion of sequent:

ψ1, . . . , ψm︸ ︷︷ ︸
antecedent

=⇒ φ1, . . . , φn︸ ︷︷ ︸
succedent

has same meaning as
(ψ1 ∧ · · · ∧ ψm) → (φ1 ∨ · · · ∨ φn)

which (for closed formulas ψi , φi ) is equivalent to

{ψ1, . . . , ψm} |= φ1 ∨ · · · ∨ φn
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Notation for Sequents

ψ1, . . . , ψm =⇒ φ1, . . . , φn

Consider antecedent/succedent as sets of formulas (possibly empty)

Schema Variables

φ,ψ, . . . match formulas.
Γ,∆, . . . match sets of formulas.
Characterize infinitely many sequents with single schematic sequent, e.g.,

Γ =⇒ φ ∧ ψ, ∆

matches any sequent with occurrence of conjunction in succedent.

Here, we call φ ∧ ψ main formula and Γ,∆ side formulas of sequent

Wolfgang Ahrendt VSTA 2024 (2) 20



Notation for Sequents

ψ1, . . . , ψm =⇒ φ1, . . . , φn

Consider antecedent/succedent as sets of formulas (possibly empty)

Schema Variables

φ,ψ, . . . match formulas.
Γ,∆, . . . match sets of formulas.
Characterize infinitely many sequents with single schematic sequent, e.g.,

Γ =⇒ φ ∧ ψ, ∆

matches any sequent with occurrence of conjunction in succedent.

Here, we call φ ∧ ψ main formula and Γ,∆ side formulas of sequent

Wolfgang Ahrendt VSTA 2024 (2) 20



Sequent Calculus Rules

Write syntactic transformation schema for sequents,
reflecting semantics of connectives

RuleName

premisses︷ ︸︸ ︷
Γ1 =⇒ ∆1 · · · Γr =⇒ ∆r

Γ =⇒ ∆︸ ︷︷ ︸
conclusion

Meaning: For proving the conclusion, it suffices to prove all premisses.

Example

andRight
Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

Admissible to have no premisses (then the rule is called ‘axiom’).

A rule is sound (correct) iff the validity of all premisses implies the validity of the conclusion.
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‘Propositional’ Sequent Calculus Rules

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

left side (antecedent) right side (succedent)

not
Γ =⇒ φ,∆

Γ,¬φ =⇒ ∆

Γ, φ =⇒ ∆

Γ =⇒ ¬φ,∆

and
Γ, φ, ψ =⇒ ∆

Γ, φ ∧ ψ =⇒ ∆

Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

or
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ ∨ ψ =⇒ ∆

Γ =⇒ φ, ψ,∆

Γ =⇒ φ ∨ ψ,∆

imp
Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ→ ψ =⇒ ∆

Γ, φ =⇒ ψ,∆

Γ =⇒ φ→ ψ,∆
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Sequent Calculus Proofs

Goal to prove: G = ψ1, . . . , ψm =⇒ φ1, . . . , φn

▶ find rule R whose conclusion matches G
▶ instantiate R such that its conclusion is identical to G
▶ apply that instantiation to all premisses of R, resulting in new goals G1, . . . , Gr

▶ recursively find proofs for G1, . . . , Gr

▶ tree structure with goal as root

▶ close proof branch when applying rule without premiss

Goal-directed proof search

▶ Paper proofs: root at bottom, grow upwards

▶ KeY tool proofs: root at top, grow downwards
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A Simple Proof

=⇒ (p ∧ (p → q)) → q

A proof is closed iff all its branches are closed

Demo
prop.key
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Proving Validity of First-Order Formulas

Proving a universally quantified formula

Claim: ∀ τ x ; φ is true

How is such a claim proved in Mathematics?

All even numbers are divisible by 2 ∀ int x ; (even(x) → divByTwo(x))

Let c be an arbitrary number Declare “unused” constant int c

The even number c is divisible by 2 Prove even(c) → divByTwo(c)

Sequent rule ∀-right

forallRight
Γ =⇒ [x/c]φ,∆

Γ =⇒ ∀ τ x ; φ,∆

▶ [x/c]φ is result of replacing each occurrence of x in φ with c

▶ c new constant of type τ
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Proving Validity of First-Order Formulas Cont’d

Proving an existentially quantified formula

Claim: ∃ τ x ; φ is true

How is such a claim proved in Mathematics?

There is at least one prime number ∃ int x ; prime(x)

Provide any “witness”, say, 7 Use variable-free term int 7

7 is a prime number Prove prime(7)

Sequent rule ∃-right

existsRight
Γ =⇒ [x/t]φ, ∃ τ x ; φ,∆

Γ =⇒ ∃ τ x ; φ,∆

▶ t any variable-free term of type τ

▶ We might need other instances besides t! Keep ∃ τ x ; φ
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Proving Validity of First-Order Formulas Cont’d

Using a universally quantified formula

We assume ∀ τ x ; φ is true.

How is such a fact used in a Mathematical proof?

We know that all primes are odd ∀ int x ; (prime(x) → odd(x))

In particular, this holds for 17 Use variable-free term int 17

We know: if 17 is prime it is odd prime(17) → odd(17)

Sequent rule ∀-left

forallLeft
Γ,∀ τ x ; φ, [x/t]φ =⇒ ∆

Γ,∀ τ x ; φ =⇒ ∆

▶ t any variable-free term of type τ

▶ We might need other instances besides t! Keep ∀ τ x ; φ

Wolfgang Ahrendt VSTA 2024 (2) 27



Proving Validity of First-Order Formulas Cont’d

Using a universally quantified formula

We assume ∀ τ x ; φ is true.

How is such a fact used in a Mathematical proof?

We know that all primes are odd ∀ int x ; (prime(x) → odd(x))

In particular, this holds for 17 Use variable-free term int 17

We know: if 17 is prime it is odd prime(17) → odd(17)

Sequent rule ∀-left

forallLeft
Γ, ∀ τ x ; φ, [x/t]φ =⇒ ∆

Γ,∀ τ x ; φ =⇒ ∆

▶ t any variable-free term of type τ

▶ We might need other instances besides t! Keep ∀ τ x ; φ
Wolfgang Ahrendt VSTA 2024 (2) 27



Proving Validity of First-Order Formulas Cont’d

Using an existentially quantified formula

We assume ∃ τ x ; φ is true

How is such a fact used in a Mathematical proof?

We know such an element exists. Let’s give that element it a new name.

Sequent rule ∃-left

existsLeft
Γ, [x/c]φ =⇒ ∆

Γ,∃ τ x ; φ =⇒ ∆

▶ c new constant of type τ
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Proving Validity of First-Order Formulas Cont’d

Using an equation between terms

We assume t = t ′ is true

How is such a fact used in a Mathematical proof?

x = y−1 =⇒ (x+1)/y = 1

Use x = y−1 to modify (x+1)/y :
Replace x in succedent with right-hand side of antecedent

x = y−1 =⇒ (y−1+1)/y = 1

Sequent rule =-left

applyEqL
Γ, t = t ′, [t/t ′]φ =⇒ ∆

Γ, t = t ′, φ =⇒ ∆
applyEqR

Γ, t = t ′ =⇒ [t/t ′]φ,∆

Γ, t = t ′ =⇒ φ,∆

▶ Always replace left- with right-hand side (use eqSymm if necessary)

▶ t,t ′ variable-free terms of the same type
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Proving Validity of First-Order Formulas Cont’d

Closing a subgoal in a proof

▶ We derived a sequent that is trivially valid

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

▶ We derived an equation that is trivially valid

eqClose
Γ =⇒ t = t,∆
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Sequent Calculus for FOL at One Glance

left side, antecedent right side, succedent

∀
Γ, ∀ τ x ; φ, [x/t ′]φ =⇒ ∆

Γ, ∀ τ x ; φ =⇒ ∆

Γ =⇒ [x/c]φ,∆

Γ =⇒ ∀ τ x ; φ,∆

∃
Γ, [x/c]φ =⇒ ∆

Γ, ∃ τ x ; φ =⇒ ∆

Γ =⇒ [x/t ′]φ, ∃ τ x ; φ,∆
Γ =⇒ ∃ τ x ; φ,∆

=
Γ, t = t ′ =⇒ [t/t ′]φ,∆

Γ, t = t ′ =⇒ φ,∆ Γ =⇒ t = t,∆
(+ application rule on left side)

▶ [t/t ′]φ is result of replacing each occurrence of t in φ with t ′

▶ t,t ′ variable-free terms of type τ

▶ c new constant of type τ (occurs not on current proof branch)

▶ Equations can be reversed by commutativity
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Recap: ‘Propositional’ Sequent Calculus Rules

main left side (antecedent) right side (succedent)

not
Γ =⇒ φ,∆

Γ,¬φ =⇒ ∆

Γ, φ =⇒ ∆

Γ =⇒ ¬φ,∆

and
Γ, φ, ψ =⇒ ∆

Γ, φ ∧ ψ =⇒ ∆

Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

or
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ ∨ ψ =⇒ ∆

Γ =⇒ φ, ψ,∆

Γ =⇒ φ ∨ ψ,∆

imp
Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ→ ψ =⇒ ∆

Γ, φ =⇒ ψ,∆

Γ =⇒ φ→ ψ,∆

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆
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Proving Validity of First-Order Formulas Cont’d

Example (A simple theorem about binary relations)

∗
p(c, d), ∀ y ; p(c , y) =⇒ p(c , d), ∃ x ; p(x , d)

p(c , d), ∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)
∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∃ x ; ∀ y ; p(x , y) =⇒ ∀ y ; ∃ x ; p(x , y)

“Untyped” logic: let type of x and y be any
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Proving Validity of First-Order Formulas Cont’d

Example (A simple theorem about binary relations)
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Proving Validity of First-Order Formulas Cont’d

Example (A simple theorem about binary relations)

∗
p(c, d), ∀ y ; p(c , y) =⇒ p(c , d), ∃ x ; p(x , d)

p(c , d), ∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)
∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∀ y ; ∃ x ; p(x , y)
∃ x ; ∀ y ; p(x , y) =⇒ ∀ y ; ∃ x ; p(x , y)

Demo
relSimple.key
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Proving Validity of First-Order Formulas Cont’d

Using an existentially quantified formula

Let x , y denote integer constants, both are not zero. We know further that x divides y .

Show: (y/x) ∗ x = y
(equation not always true in integer division, e.g., y = 1, x = 2)
Proof: We know x divides y , i.e. there exists a k such that y = k ∗ x . Let now c denote such
a k. Hence we can replace y by c ∗ x on the right side. . . .

∗
...

¬(x = 0),¬(y = 0), y = c ∗ x =⇒ ((c ∗ x)/x) ∗ x = y

¬(x = 0),¬(y = 0), y = c ∗ x =⇒ (y/x) ∗ x = y

¬(x = 0),¬(y = 0),∃ int k ; y = k ∗ x

=⇒

(y/x) ∗ x = y
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(equation not always true in integer division, e.g., y = 1, x = 2)
Proof: We know x divides y , i.e. there exists a k such that y = k ∗ x . Let now c denote such
a k. Hence we can replace y by c ∗ x on the right side. . . .
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Features of the KeY Theorem Prover

Demo
rel.key, twoInstances.key

Feature List

▶ Can work on multiple proofs simultaneously (task list)

▶ Point-and-click navigation within proof

▶ Undo proof steps, prune proof trees

▶ Pop-up menu with proof rules applicable in pointer focus

▶ Preview of rule effect as tool tip

▶ Quantifier instantiation and equality rules by drag-and-drop

▶ Possible to hide (and unhide) parts of a sequent

▶ Saving and loading of proofs
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Part III

Java Dynamic Logic
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Java DL Example Formulas

(balance ≥ c ∧ amount > 0) → ⟨charge(amount);⟩ balance > c

o1.f < o2.f → [t=o1.f; o1.f=o2.f; o2.f=t;] o2.f < o1.f

o1.f > 0 → [o1.f=o1.f+o2.f; o2.f=o1.f-o2.f; o1.f=o1.f-o2.f;] o2.f > 0

Last formula not valid: If o1 = o2 in prestate, then o2.f = 0 in poststate.

Symbolic execution must take possible aliasing into account.
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Java DL Example Formula

∀ int x ;
(n = x ∧ x >= 0 →
[ i = 0; r = 0;

while (i<n) { i = i + 1; r = r + i;}
r=r+r-n;

] r = x ∗ x)
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Java DL Example Formula (in ASCII)

a != null

->

<

int max = 0;

if ( a.length > 0 ) max = a[0];

int i = 1;

while ( i < a.length ) {

if ( a[i] > max ) max = a[i];

++i;

}

>

\forall int j; (j >= 0 & j < a.length -> max >= a[j])

&

(a.length > 0 ->

\exists int j; (j >= 0 & j < a.length & max = a[j]))
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Assignment Rule Using Updates

Symbolic execution of assignment using updates

assign
Γ =⇒ U{x := t}⟨rest ⟩φ,∆
Γ =⇒ U⟨x := t; rest ⟩φ,∆

t simple

▶ U : (nested) updates
▶ t simple: no side effects, no exceptions
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Java DL Rules

Example rule

if
Γ,U(b = true) =⇒ U⟨p; rest ⟩φ,∆ Γ,U(b = false) =⇒ U⟨q; rest ⟩φ,∆

Γ =⇒ U⟨ if (b) { p } else { q } ; rest ⟩φ,∆
b simple

Symbolic execution must consider all possible execution branches
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Java Dynamic Logic

Reasoning about Java programs requires extensions of FOL

▶ Java type hierarchy

▶ Java program variables

▶ Java heap for reference types
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Type Hierarchy

Definition (Type Hierarchy)

▶ TΣ is set of types
▶ Subtype relation ⊑ ⊆ TΣ × TΣ with top element ⊤

▶ τ ⊑ ⊤ for all τ ∈ TΣ
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Modelling Java in FOL: Fixing a Type Hierarchy

TΣ based on Java’s type hierarchy (sketch)

⊤

Heap Field

any

booleanint Object

classes + interfaces + array types

Null
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Modelling the Heap in FOL

The Java Heap

Objects are stored on (i.e., in) the heap.

▶ Status of heap changes during execution

▶ Each heap associates values to object/field pairs

The Heap Model of KeY-DL

Each element of data type Heap represents a certain heap status.
Two functions involving heaps:

▶ in FΣ: Heap store(Heap, Object, Field, any);
store(h, o, f , v) returns heap like h, but with v associated to o.f

▶ in FΣ: any select(Heap, Object, Field);
select(h, o, f ) returns value associated to o.f in h
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Modelling the Heap in FOL

Modelling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

▶ for each Java reference type C there is a type C ∈ TΣ,
e.g., Person

▶ for each field f there is a unique constant f of type
Field, e.g., id

▶ heap maps pair (object, field) to value

Reading Field id of Person p

FOL notation select(h, p, id)

KeY notation p.id@h ( abbreviating select(h, p, id) )
p.id ( abbreviating select(heap, p, id) )a

aheap is special program variable for “current” heap; mostly implicit in o.f
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The Algebra of Heaps

We do not formalise the structure (implementation) of heaps.
We formalise the behaviour, with an algebra of heap operations:

select(store(h, o, f , v), o, f ) =

v

(o ̸= o ′ ∨ f ̸= f ′) → select(store(h, o, f , x), o ′, f ′) = select(h, o ′, f ′)

Example

select(store(h, o, f, 15), o, f)⇝

15

select(store(h, o, f, 15), o, g)⇝

select(h, o, g)

select(store(h, o, f, 15), u, f)⇝

if (o = u) then 15 else select(h, u, f)
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Pretty Printing

Shorthand Notations for Heap Operations

o.f@h is select(h, o, f)
h[o.f := v] is store(h, o, f, v)

therefore:

u.f@h[o.f := v] is select(store(h, o, f, v), u, f)
h[o.f := v][o′.f′ := v′] is store(store(h, o, f, v), o′, f′, v′)

Very-Shorthand Notations for Current Heap

Current heap always in special variable heap.
o.f is select(heap, o, f)
{o.f := v} is update {heap := heap[o.f := v]}
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Field Update Assignment Rule

Changing the value of fields

How to (symbolically) execute assignment to field, e.g., p.age=18; ?

assign
Γ =⇒ {o.f := t}⟨rest ⟩φ,∆
Γ =⇒ ⟨o.f = t; rest ⟩φ,∆

Admit on left-hand side of update Java location expressions

But is this rule correct? See below.
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Dynamic Logic: KeY input file

\javaSource "path to source code referenced in problem ";

\programVariables { Person p; }

\problem {

\<{ p.age = 18; }\> p.age = 18

}

KeY reads in all source files and creates automatically
the necessary signature (types, program variables, field constants)

Demo
updates/firstAttributeExample.key
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Refined Semantics of Program Modalities

Does abrupt termination count as normal termination?
No! Need to distinguish normal and exceptional termination

▶ ⟨p⟩φ: p terminates normally and formula φ holds in final state
(total correctness)

▶ [p]φ: If p terminates normally then formula φ holds in final state
(partial correctness)

Abrupt termination on top-level counts as non-termination!
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Example Reconsidered: Exception Handling

\javaSource "path to source code ";

\programVariables {

...

}

\problem {

p != null -> \<{ p.age = 18; }\> p.age = 18

}

Only provable when no top-level exception is thrown

Demo
updates/secondAttributeExample.key
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Which Objects do Exist?

How to model object creation with new ?

Constant Domain Assumption

Assume that domain D is the same in all states (D, δ, I) ∈ States

Consequence:
Quantifiers and modalities commute:

|= (∀T x ; [p]φ) ↔ [p](∀T x ; φ)
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Object Creation

Realizing Constant Domain Assumption

▶ Implicitly declared field boolean <created> in class Object

▶ <created> has value true iff argument object has been created

▶ Object creation modeled as {heap := create(heap, ob)} for not (yet) created ob

(essentially sets <created> field of ob to true)

Γ, ob.<created> = FALSE =⇒
{heap :=create(heap, ob)}{o :=ob}⟨o.<init>(param);ω⟩φ, ∆

Γ =⇒ ⟨o = new T(param); ω⟩φ,∆

ob is a fresh program variable

Alternatives exisit in the literature. E.g.:
[Ahrendt, de Boer, Grabe, Abstract Object Creation in Dynamic Logic – To Be or Not To Be
Created, Springer, LNCS 5850]
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Type Hierarchy

Modeling OO Programs

Object Creation

Round Tour
Java Coverage
Arrays
Side Effects
Abrupt Termination
Null Pointers
Aliasing
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Dynamic Logic to (almost) full Java

KeY supports full sequential Java, with some limitations:

▶ No concurrency

▶ No generics

▶ No I/O

▶ No dynamic class loading or reflection

▶ API method calls: need either JML contract or implementation

▶ Recently added: support for floating-point numbers/arithemic
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Java Features in Dynamic Logic: Arrays

Arrays

Object

Object[]

Object[][]

▶ Java type hierarchy includes array types

▶ Types ordered according to Java subtyping rules

▶ Function arr : int → Field turns integer index into type Field (required
in store).

▶ Store array elements on heap

▶ Value of a[i] in heap store(heap, a, arr(i), 8) is 8

▶ Arrays a and b can refer to same object (aliasing)
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Java Features in Dynamic Logic:
Complex Expressions

Complex expressions with side effects

▶ Java expressions may have side effects, due to method calls, increment/decrement
operators, nested assignments

▶ FOL terms have no side effect on the state

Example (Complex expression with side effects in Java)

int i = 0; if ((i=2)>= 2) i++; value of i ?
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Complex Expressions Cont’d

Decomposition of complex terms by symbolic execution

Follow the rules laid down in Java Language Specification

Local code transformations

evalOrderIteratedAssgnmt
Γ =⇒ ⟨y = t; x = y; ω⟩φ,∆
Γ =⇒ ⟨x = y = t; ω⟩φ,∆

t simple

Temporary variables store result of evaluating subexpression

ifEval
Γ =⇒ ⟨boolean v0; v0 = b; if (v0) p; ω⟩φ,∆

Γ =⇒ ⟨if (b) p; ω⟩φ,∆
b complex
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Java Features in Dynamic Logic:
Abrupt Termination

Abrupt Termination: Exceptions and Jumps

Redirection of control flow via return, break, continue, exceptions

⟨try {p} catch(T e) {q} finally {r} ω⟩φ

Rule tryThrow matches try–catch in pre-/postfix and active throw

=⇒⟨if(e instanceof T){try{x=e;q}finally{r}}else{r;throw e;}ω⟩φ
=⇒ ⟨try { throw e; p} catch(T x) {q} finally {r} ω⟩φ

Demo

exceptions/try-catch.key (inspect file, auto-prove, inspect proof)
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Java Features in Dynamic Logic: Null

Null pointer exceptions

There are no “exceptions” in FOL: interpretations I are total

Need to model possibility that o =null in o.a

▶ KeY branches over o =null and o ̸=null upon each field access within modalitiesa

▶ Thereby, o.a appears outside modalities mostly under assumption o ̸=null

▶ null.a outside modalities has a value, which is unknown

aCan be changed with Taclet Option runtimeExceptions
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Field Update Assignment Rule Revisited (A)

Changing the value of fields

How to (symbolically) execute assignment to field?

Γ,

o ̸= null

=⇒ {o.f := e}⟨

π

ω⟩φ,∆

Γ, o = null =⇒

⟨

π

throw new NullPointerException(); ω⟩φ

,∆

Γ =⇒ ⟨

π

o.f = e; ω⟩φ,∆

π is the “inactive prefix”, any number of opening try blocks: (try{)∗
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Field Update Assignment Rule Revisited (B)

Changing the value of fields

How to (symbolically) execute assignment to field?

Γ =⇒ o = null, {o.f := e}⟨π ω⟩φ,∆
Γ, o = null =⇒ ⟨π throw new NullPointerException(); ω⟩φ,∆

Γ =⇒ ⟨π o.f = e; ω⟩φ,∆

π is the “inactive prefix”, any number of opening try blocks: (try{)∗
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Revisit: Field Assignment Demo

\javaSource "path to source code referenced in problem ";

\programVariables { Person p; }

\problem {

p != null -> \<{ p.age = 18; }\> p.age = 18

}

Demo
updates/secondAttributeExample.key
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Java Features in Dynamic Logic: Aliasing

Demo

aliasing/attributeAlias1.key

Reference Aliasing

Alias resolution causes proof split
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