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Part I

Java Modeling Language
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Running Example: ATM.java

public class ATM {

// fields:

private BankCard insertedCard = null;

private int wrongPINCounter = 0;

private boolean customerAuthenticated = false;

// methods:

public void insertCard (BankCard card) { ... }

public void enterPIN (int pin) { ... }

public int accountBalance () { ... }

public int withdraw (int amount) { ... }

public void ejectCard () { ... }

}
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Informal Specification

very informal specification of ‘enterPIN (int pin)’:

Checks whether the pin belongs to the bank card currently inserted in the ATM. If
a wrong pin is received three times in a row, the card is confiscated. After receiving
the correct pin, the customer is regarded as authenticated.
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Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 3 and pin is incorrect

postcondition wrongPINCounter has been increased by 1,
user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 3 and pin is incorrect

postcondition card is confiscated
user is not authenticated
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Meaning of Pre/Postcondition pairs

Definition

A pre/post-condition pair for a method m is
satisfied by the implementation of m if:

When m is called in any state that satisfies the precondition then in any terminating
state of m the postcondition is true.

1. No guarantees are given when the precondition is not satisfied.

2. Termination may or may not be guaranteed.

3. In case of termination, it may be normal or abrupt.

non-termination and abrupt termination ⇒ later

Wolfgang Ahrendt VSTA 2024 (3) 5



Meaning of Pre/Postcondition pairs

Definition

A pre/post-condition pair for a method m is
satisfied by the implementation of m if:

When m is called in any state that satisfies the precondition then in any terminating
state of m the postcondition is true.

1. No guarantees are given when the precondition is not satisfied.

2. Termination may or may not be guaranteed.

3. In case of termination, it may be normal or abrupt.

non-termination and abrupt termination ⇒ later

Wolfgang Ahrendt VSTA 2024 (3) 5



Meaning of Pre/Postcondition pairs

Definition

A pre/post-condition pair for a method m is
satisfied by the implementation of m if:

When m is called in any state that satisfies the precondition then in any terminating
state of m the postcondition is true.

1. No guarantees are given when the precondition is not satisfied.

2. Termination may or may not be guaranteed.

3. In case of termination, it may be normal or abrupt.

non-termination and abrupt termination ⇒ later

Wolfgang Ahrendt VSTA 2024 (3) 5



JML by Example

from the file ATM.java

...

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if ( ...

...

Everything between /* and */ is invisible for Java.
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JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if ( ...

But:

A Java comment with ‘@’ as its first character
it is not a comment for JML tools.

JML annotations appear in Java comments starting with @.

How about “//”comments?
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JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if ( ...

What about the intermediate ‘@’s?

Within a JML annotation, a ‘@’ is ignored:

▶ if it is the first (non-white) character in the line

▶ if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to use them.
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JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if ( ...

This is a public specification case:

1. it is accessible from all classes and interfaces

2. it can only mention public fields/methods of this class

2. Can be a problem. Solution comes later.
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JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if ( ...

Each keyword ending with behavior opens a ‘specification case’.

normal_behavior Specification Case

The method guarantees to not throw any exception

(on the top level),
if the caller guarantees all preconditions of this specification case.
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JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if ( ...

This specification case has two preconditions (marked by requires)

1. !customerAuthenticated

2. pin == insertedCard.correctPIN

Here:
preconditions are boolean Java expressions

In general:
preconditions are boolean JML expressions (see below)
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JML by Example

different specification cases are connected by ‘also’.

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@

@ also

@

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 3;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@*/

public void enterPIN (int pin) {

if ( ...
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JML by Example

/*@ <spec-case1> also

@

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 3;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@*/

public void enterPIN (int pin) { ...

For the first time, JML expression not a Java expression.

\old(E) means: E evaluated in the prestate of enterPIN.

E can be any (arbitrarily complex) JML expression.
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JML by Example

/*@ <spec-case1> also <spec-case2> also

@

@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter >= 3;

@ ensures insertedCard == null;

@ ensures \old(insertedCard).invalid;

@*/

public void enterPIN (int pin) { ...

Two postconditions state that:

“Given the above preconditions, enterPIN guarantees:

insertedCard == null and \old(insertedCard).invalid”
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JML by Example

Question:

Could it be

@ ensures \old(insertedCard.invalid);

instead of

@ ensures \old(insertedCard).invalid;

??

A: No. The second says that, after the method, the current value of field invalid (of the
object formerly referred to by insertCard) is false.
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Specification Cases Complete?

Consider spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

What does spec-case-1 not tell about poststate?

Recall: fields of class ATM:

insertedCard

customerAuthenticated

wrongPINCounter

What happens with insertCard and wrongPINCounter?
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Assignable Clause

Unsatisfactory to add

JML

@ ensures loc == \old(loc);

JML

for all locations loc which do not change.

Instead:
add assignable clause for all locations which may change

JML

@ assignable loc1,...,locn;

JML
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Specification Cases with Assignable

completing spec-case-1:

JML

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@ assignable customerAuthenticated;

JML
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Specification Cases with Assignable

completing spec-case-2:

JML

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 3;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@ assignable wrongPINCounter;

JML
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Specification Cases with Assignable

completing spec-case-3:

JML

@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter >= 3;

@ ensures insertedCard == null;

@ ensures \old(insertedCard).invalid;

@ assignable insertedCard,

@ insertedCard.invalid,

JML
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Assignable Groups

You can specify groups of locations as assignable, using ‘*’.

Example:

@ assignable o.*, a[*];

makes all fields of object o and all positions of array a assignable.
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JML Modifiers

JML extends the Java modifiers by additional modifiers

The most important ones are:

▶ spec_public

▶ pure

▶ nullable

▶ non_null

▶ helper
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JML Modifiers: spec_public

In enterPIN example, pre/postconditions made heavy use of class fields

But: public specifications can access only public fields

Not desired: make all fields mentioned in specification public

Control visibility with spec_public

▶ Keep visibility of Java fields private/protected

▶ If needed, make them public in specification, only by spec_public

private /*@ spec_public @*/ BankCard insertedCard = null;

private /*@ spec_public @*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated

= false;

(Alternative solution: use specification-only fields; not covered in this course.)
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JML Modifiers: Purity

It can be handy to use method calls in JML annotations.

Examples:
o1.equals(o2) li.contains(elem) li1.max() < li2.min()

But: specifications must not themselves change the state!

Definition ((Strictly) Pure method)

A method is pure iff it always terminates and has no visible side effects on existing objects.
A method is strictly pure if it is pure and does not create new objects.

JML expressions may contain calls to (strictly) pure methods.

Pure methods are annotated by pure or strictly_pure resp.

public /*@ pure @*/ int max() { ... }
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JML Expressions ̸= Java Expressions

boolean JML Expressions (to be completed)

▶ Each side-effect free boolean Java expression is a boolean JML expression

▶ If a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:
▶ !a (“not a”)
▶ a && b (“a and b”)
▶ a || b (“a or b”)

▶ a ==> b (“a implies b”)
▶ a <==> b (“a is equivalent to b”)
▶ ...
▶ ...
▶ ...
▶ ...
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Beyond boolean Java expressions

How to express the following?

▶ An array arr only holds values ≤ 9.

▶ The variable m holds the maximum entry of array arr.

▶ All Account objects in the array allAccounts are stored at the index corresponding to
their respective accountNumber field.

▶ All instances of class BankCard have different cardNumbers.

Wolfgang Ahrendt VSTA 2024 (3) 27



Beyond boolean Java expressions

How to express the following?

▶ An array arr only holds values ≤ 9.

▶ The variable m holds the maximum entry of array arr.

▶ All Account objects in the array allAccounts are stored at the index corresponding to
their respective accountNumber field.

▶ All instances of class BankCard have different cardNumbers.

Wolfgang Ahrendt VSTA 2024 (3) 27



Beyond boolean Java expressions

How to express the following?

▶ An array arr only holds values ≤ 9.

▶ The variable m holds the maximum entry of array arr.

▶ All Account objects in the array allAccounts are stored at the index corresponding to
their respective accountNumber field.

▶ All instances of class BankCard have different cardNumbers.

Wolfgang Ahrendt VSTA 2024 (3) 27



Beyond boolean Java expressions

How to express the following?

▶ An array arr only holds values ≤ 9.

▶ The variable m holds the maximum entry of array arr.

▶ All Account objects in the array allAccounts are stored at the index corresponding to
their respective accountNumber field.

▶ All instances of class BankCard have different cardNumbers.

Wolfgang Ahrendt VSTA 2024 (3) 27



First-order Logic in JML Expressions

JML boolean expressions extend Java boolean expressions by:

▶ implication

▶ equivalence

▶ quantification
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boolean JML Expressions

boolean JML expressions are defined recursively:

boolean JML Expressions

▶ each side-effect free boolean Java expression is a boolean JML expression

▶ if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:
▶ !a (“not a”)
▶ a && b (“a and b”)
▶ a || b (“a or b”)
▶ a ==> b (“a implies b”)
▶ a <==> b (“a is equivalent to b”)
▶ (\forall t x; a) (“for all x of type t, a holds”)
▶ (\exists t x; a) (“there exists x of type t such that a”)

▶ (\forall t x; a; b) (“for all x of type t fulfilling a, b holds”)
▶ (\exists t x; a; b) (“there exists an x of type t fulfilling a,

such that b”)
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JML Quantifiers

In

(\forall t x; a; b)

(\exists t x; a; b)

a is called “range predicate”

Range predicates are redundant:

(\forall t x; a; b)

equivalent to
(\forall t x; a ==> b)

(\exists t x; a; b)

equivalent to
(\exists t x; a && b)
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Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

Pragmatics of range predicate:

a is used to restrict range of x further than t

Example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j; 0<=i && i<j && j<10; arr[i] <= arr[j])
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Using Quantified JML expressions

How to express:

▶ An array arr only holds values ≤ 9.

JML

(\forall int i; 0 <= i && i < arr.length; arr[i] <= 9)

JML
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Using Quantified JML expressions

How to express:

▶ The variable m holds the maximum entry of array arr.

JML

(\forall int i; 0 <= i && i < arr.length; m >= arr[i])

JML

is this enough?

JML

(\exists int i; 0 <= i && i < arr.length; m == arr[i])

JML
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Using Quantified JML expressions

How to express:

▶ All Account objects in the array accountArray are stored at the index corresponding to
their respective accountNumber field.

JML

(\forall int i; 0 <= i && i < maxAccountNumber;

accountArray[i].accountNumber == i )

JML
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Using Quantified JML expressions

How to express:

▶ All existing instances of class BankCard have different cardNumbers.

JML

(\forall BankCard p1, p2;

p1 != p2 ==> p1.cardNumber != p2.cardNumber)

JML
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Example: Specifying LimitedIntegerSet

public class LimitedIntegerSet {

public final int limit;

private int arr[];

private int size = 0;

public LimitedIntegerSet(int limit) {

this.limit = limit;

this.arr = new int[limit];

}

public boolean add(int elem) {/*...*/}

public void remove(int elem) {/*...*/}

public boolean contains(int elem) {/*...*/}

// other methods

}
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Prerequisites: Adding Specification Modifiers

public class LimitedIntegerSet {

public final int limit;

private /*@ spec_public @*/ int arr[];

private /*@ spec_public @*/ int size = 0;

public LimitedIntegerSet(int limit) {

this.limit = limit;

this.arr = new int[limit];

}

public boolean add(int elem) {/*...*/}

public void remove(int elem) {/*...*/}

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

// other methods

}
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Specifying contains()

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

contains is pure: no effect on the state + terminates normally

How to specify result value?
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Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result ==

(\exists int i;

@ 0 <= i && i < size;

@ arr[i] == elem);

@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}
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Specifying add() (spec-case1) – new element can be added

/*@ public normal_behavior

@ requires size < limit && !contains(elem);

@ ensures \result == true;

@ ensures contains(elem);

@ ensures (\forall int e;

@ e != elem;

@ contains(e) <==> \old(contains(e)));

@ ensures size == \old(size) + 1;

@

@ also

@

@ <spec-case2>

@*/

public boolean add(int elem) {/*...*/}
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Specifying add() (spec-case2) – new element cannot be added

/*@ public normal_behavior

@

@ <spec-case1>

@

@ also

@

@ public normal_behavior

@ requires (size == limit) contains(elem);

@ ensures \result == false;

@ ensures (\forall int e;

@ contains(e) <==> \old(contains(e)));

@ ensures size == \old(size);

@*/

public boolean add(int elem) {/*...*/}
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Specifying remove()

/*@ public normal_behavior

@ ensures !contains(elem);

@ ensures (\forall int e;

@ e != elem;

@ contains(e) <==> \old(contains(e)));

@ ensures \old(contains(elem))

@ ==> size == \old(size) - 1;

@ ensures !\old(contains(elem))

@ ==> size == \old(size);

@*/

public void remove(int elem) {/*...*/}
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Specifying Data Constraints

So far:
JML used to specify method specifics.

How to specify constraints on data, e.g.:

▶ consistency of redundant data representations (like indexing)

▶ restrictions for efficiency (like sortedness)

Data constraints are global: all methods must preserve them
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Consider LimitedSorted IntegerSet

public class LimitedSortedIntegerSet {

public final int limit;

private int arr[];

private int size = 0;

public LimitedSortedIntegerSet(int limit) {

this.limit = limit;

this.arr = new int[limit];

}

public boolean add(int elem) {/*...*/}

public void remove(int elem) {/*...*/}

public boolean contains(int elem) {/*...*/}

// other methods

}
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Consequence of Sortedness for Implementer

method contains

▶ Can employ binary search (logarithmic complexity)

▶ Why does that even work?

▶ We assume sortedness in prestate

method add

▶ Search first index with bigger element, insert just before that

▶ Thereby try to establish sortedness in poststate

▶ Why is that sufficient?

▶ We assume sortedness in prestate

method remove

▶ (accordingly)
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Specifying Sortedness with JML

Recall class fields:

public final int limit;

private int arr[];

private int size = 0;

Sortedness as JML expression:

(\forall int i; 0 < i && i < size;

arr[i-1] <= arr[i])

(What’s the value of this if size < 2?)

But where in the specification does the red expression go?
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Specifying Sorted contains()

Can assume sortedness of prestate

/*@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@ ensures \result == (\exists int i;

@ 0 <= i && i < size;

@ arr[i] == elem);

@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

contains() is pure
⇒ sortedness of poststate trivially ensured

Wolfgang Ahrendt VSTA 2024 (3) 47



Specifying Sorted contains()

Can assume sortedness of prestate

/*@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@ ensures \result == (\exists int i;

@ 0 <= i && i < size;

@ arr[i] == elem);

@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

contains() is pure
⇒ sortedness of poststate trivially ensured

Wolfgang Ahrendt VSTA 2024 (3) 47



Specifying Sorted contains()

Can assume sortedness of prestate

/*@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@ ensures \result == (\exists int i;

@ 0 <= i && i < size;

@ arr[i] == elem);

@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

contains() is pure
⇒ sortedness of poststate trivially ensured

Wolfgang Ahrendt VSTA 2024 (3) 47



Specifying Sorted remove()

Can assume sortedness of prestate. Must ensure sortedness of poststate

/*@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@ ensures !contains(elem);

@ ensures (\forall int e; e != elem;

@ contains(e) <==> \old(contains(e)));

@ ensures \old(contains(elem))

@ ==> size == \old(size) - 1;

@ ensures !\old(contains(elem))

@ ==> size == \old(size);

@ ensures (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@*/

public void remove(int elem) {/*...*/}
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Specifying Sorted add() (spec-case1) – can add

/*@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@ requires size < limit && !contains(elem);

@ ensures \result == true;

@ ensures contains(elem);

@ ensures (\forall int e; e != elem;

@ contains(e) <==> \old(contains(e)));

@ ensures size == \old(size) + 1;

@ ensures (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@

@ also <spec-case2>

@*/

public boolean add(int elem) {/*...*/}
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Specifying Sorted add() (spec-case2) – cannot add

/*@ public normal_behavior

@

@ <spec-case1> also

@

@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@ requires (size == limit) contains(elem);

@ ensures \result == false;

@ ensures (\forall int e; contains(e) <==> \old(contains(e)));

@ ensures size == \old(size);

@ ensures (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@*/

public boolean add(int elem) {/*...*/}
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Factor out Sortedness

So far: ‘sortedness’ has swamped our specification

We can do better, using

JML Class Invariant

construct for specifying data constraints centrally

1. delete blue and red parts from previous slides

2. add ‘sortedness’ as JML class invariant instead
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JML Class Invariant

public class LimitedSortedIntegerSet {

public final int limit;

/*@ private invariant (\forall int i;

@ 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@*/

private /*@ spec_public @*/ int arr[];

private /*@ spec_public @*/ int size = 0;

// constructor and methods,

// without sortedness in pre/postconditions

}
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Revisit Specification of enterPIN()

private /*@ spec_public @*/ BankCard insertedCard = null;

private /*@ spec_public @*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated

= false;

/*@ <spec-case1> also <spec-case2> also <spec-case3>

@*/

public void enterPIN (int pin) { ...

so far:
all 3 spec-cases were normal_behavior
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Specifying Exceptional Behavior of Methods

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if prestate satisfies P

exceptional_behavior specification case, with preconditions P,
requires method to throw exceptions if prestate satisfies P

Keyword signals specifies poststate, depending on thrown exception

Keyword signals_only limits types of thrown exception
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Completing Specification of enterPIN()

/*@ <spec-case1> also <spec-case2> also <spec-case3> also

@

@ public exceptional_behavior

@ requires insertedCard == null;

@ signals_only ATMException;

@ signals (ATMException) !customerAuthenticated;

@*/

public void enterPIN (int pin) { ...

In case insertedCard == null in prestate:

▶ enterPIN must throw an exception (‘exceptional_behavior’)

▶ it can only be an ATMException (‘signals_only’)

▶ method must then ensure !customerAuthenticated in poststate (‘signals’)
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Allowing Non-Termination

▶ normal_behavior

▶ exceptional_behavior

both enforce termination by default

In each specification case, non-termination can be permitted via the clause

diverges true;

Meaning:

Given the precondition of the specification case holds in prestate,
the method may or may not terminate
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Further Modifiers: non_null and nullable

JML extends the Java modifiers by further modifiers:

▶ class fields

▶ method parameters

▶ method return types

can be declared as

▶ nullable: may or may not be null

▶ non_null: must not be null
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non_null: Examples

private /*@ spec_public non_null @*/ String name;

Implicit invariant ‘public invariant name != null;’
added to class

public void insertCard(/*@ non_null @*/ BankCard card) {..

Implicit precondition ‘requires card != null;’
added to each specification case of insertCard

public /*@ non_null @*/ String toString()

Implicit postcondition ‘ensures \result != null;’
added to each specification case of toString
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non_null Default

non_null is default in JML!

⇒ same effect even without explicit ‘non null’s

private /*@ spec_public @*/ String name;

Implicit invariant ‘public invariant name != null;’
added to class

public void insertCard(BankCard card) {..

Implicit precondition ‘requires card != null;’
added to each specification case of insertCard

public String toString()

Implicit postcondition ‘ensures \result != null;’
added to each specification case of toString
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nullable: Examples

To prevent such pre/postconditions and invariants: ‘nullable’

private /*@ spec_public nullable @*/ String name;

No implicit invariant added

public void insertCard(/*@ nullable @*/ BankCard card) {..

No implicit precondition added

public /*@ nullable @*/ String toString()

No implicit postcondition added to specification cases of toString
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LinkedList: non_null or nullable?

public class LinkedList {

private Object elem;

private LinkedList next;

....

In JML this means:

▶ All elements in the list are non_null

▶ The list is cyclic, or infinite!
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LinkedList: non_null or nullable?

Repair:

public class LinkedList {

private Object elem;

private /*@ nullable @*/ LinkedList next;

....

⇒ Now, the list is allowed to end somewhere!
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