
Dynamic Logic for Practical Program Verification
Set 3

Wolfgang Ahrendt

Chalmers University of Technology, Gothenburg, Sweden

VTSA Summer School, Luxembourg, 2024

Wolfgang Ahrendt VSTA 2024 (3) 0

Part I

Java Modeling Language

Wolfgang Ahrendt VSTA 2024 (3) 1

Running Example: ATM.java

public class ATM {

// fields:

private BankCard insertedCard = null;

private int wrongPINCounter = 0;

private boolean customerAuthenticated = false;

// methods:

public void insertCard (BankCard card) { ... }

public void enterPIN (int pin) { ... }

public int accountBalance () { ... }

public int withdraw (int amount) { ... }

public void ejectCard () { ... }

}

Wolfgang Ahrendt VSTA 2024 (3) 2

Informal Specification

very informal specification of ‘enterPIN (int pin)’:

Checks whether the pin belongs to the bank card currently inserted in the ATM. If
a wrong pin is received three times in a row, the card is confiscated. After receiving
the correct pin, the customer is regarded as authenticated.

Wolfgang Ahrendt VSTA 2024 (3) 3

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 3 and pin is incorrect

postcondition wrongPINCounter has been increased by 1,
user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 3 and pin is incorrect

postcondition card is confiscated
user is not authenticated

Wolfgang Ahrendt VSTA 2024 (3) 4

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 3 and pin is incorrect

postcondition wrongPINCounter has been increased by 1,
user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 3 and pin is incorrect

postcondition card is confiscated
user is not authenticated

Wolfgang Ahrendt VSTA 2024 (3) 4

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 3 and pin is incorrect

postcondition wrongPINCounter has been increased by 1,
user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 3 and pin is incorrect

postcondition card is confiscated
user is not authenticated

Wolfgang Ahrendt VSTA 2024 (3) 4

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 3 and pin is incorrect

postcondition wrongPINCounter has been increased by 1,
user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 3 and pin is incorrect

postcondition card is confiscated
user is not authenticated

Wolfgang Ahrendt VSTA 2024 (3) 4

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 3 and pin is incorrect

postcondition wrongPINCounter has been increased by 1,
user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 3 and pin is incorrect

postcondition card is confiscated
user is not authenticated

Wolfgang Ahrendt VSTA 2024 (3) 4

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 3 and pin is incorrect

postcondition wrongPINCounter has been increased by 1,
user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 3 and pin is incorrect

postcondition card is confiscated
user is not authenticated

Wolfgang Ahrendt VSTA 2024 (3) 4

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 3 and pin is incorrect

postcondition wrongPINCounter has been increased by 1,
user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 3 and pin is incorrect

postcondition card is confiscated
user is not authenticated

Wolfgang Ahrendt VSTA 2024 (3) 4

Meaning of Pre/Postcondition pairs

Definition

A pre/post-condition pair for a method m is
satisfied by the implementation of m if:

When m is called in any state that satisfies the precondition then in any terminating
state of m the postcondition is true.

1. No guarantees are given when the precondition is not satisfied.

2. Termination may or may not be guaranteed.

3. In case of termination, it may be normal or abrupt.

non-termination and abrupt termination ⇒ later

Wolfgang Ahrendt VSTA 2024 (3) 5

Meaning of Pre/Postcondition pairs

Definition

A pre/post-condition pair for a method m is
satisfied by the implementation of m if:

When m is called in any state that satisfies the precondition then in any terminating
state of m the postcondition is true.

1. No guarantees are given when the precondition is not satisfied.

2. Termination may or may not be guaranteed.

3. In case of termination, it may be normal or abrupt.

non-termination and abrupt termination ⇒ later

Wolfgang Ahrendt VSTA 2024 (3) 5

Meaning of Pre/Postcondition pairs

Definition

A pre/post-condition pair for a method m is
satisfied by the implementation of m if:

When m is called in any state that satisfies the precondition then in any terminating
state of m the postcondition is true.

1. No guarantees are given when the precondition is not satisfied.

2. Termination may or may not be guaranteed.

3. In case of termination, it may be normal or abrupt.

non-termination and abrupt termination ⇒ later

Wolfgang Ahrendt VSTA 2024 (3) 5

JML by Example

from the file ATM.java

...

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

...

Everything between /* and */ is invisible for Java.

Wolfgang Ahrendt VSTA 2024 (3) 6

JML by Example

from the file ATM.java

...

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

...

Everything between /* and */ is invisible for Java.

Wolfgang Ahrendt VSTA 2024 (3) 6

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

But:

A Java comment with ‘@’ as its first character
it is not a comment for JML tools.

JML annotations appear in Java comments starting with @.

How about “//”comments?

Wolfgang Ahrendt VSTA 2024 (3) 7

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

But:

A Java comment with ‘@’ as its first character
it is not a comment for JML tools.

JML annotations appear in Java comments starting with @.

How about “//”comments?

Wolfgang Ahrendt VSTA 2024 (3) 7

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

But:

A Java comment with ‘@’ as its first character
it is not a comment for JML tools.

JML annotations appear in Java comments starting with @.

How about “//”comments?

Wolfgang Ahrendt VSTA 2024 (3) 7

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

But:

A Java comment with ‘@’ as its first character
it is not a comment for JML tools.

JML annotations appear in Java comments starting with @.

How about “//”comments?

Wolfgang Ahrendt VSTA 2024 (3) 7

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

What about the intermediate ‘@’s?

Within a JML annotation, a ‘@’ is ignored:

▶ if it is the first (non-white) character in the line

▶ if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to use them.

Wolfgang Ahrendt VSTA 2024 (3) 8

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

What about the intermediate ‘@’s?

Within a JML annotation, a ‘@’ is ignored:

▶ if it is the first (non-white) character in the line

▶ if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to use them.

Wolfgang Ahrendt VSTA 2024 (3) 8

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

What about the intermediate ‘@’s?

Within a JML annotation, a ‘@’ is ignored:

▶ if it is the first (non-white) character in the line

▶ if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to use them.

Wolfgang Ahrendt VSTA 2024 (3) 8

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This is a public specification case:

1. it is accessible from all classes and interfaces

2. it can only mention public fields/methods of this class

2. Can be a problem. Solution comes later.

Wolfgang Ahrendt VSTA 2024 (3) 9

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This is a public specification case:

1. it is accessible from all classes and interfaces

2. it can only mention public fields/methods of this class

2. Can be a problem. Solution comes later.

Wolfgang Ahrendt VSTA 2024 (3) 9

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

Each keyword ending with behavior opens a ‘specification case’.

normal_behavior Specification Case

The method guarantees to not throw any exception

(on the top level),
if the caller guarantees all preconditions of this specification case.

Wolfgang Ahrendt VSTA 2024 (3) 10

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

Each keyword ending with behavior opens a ‘specification case’.

normal_behavior Specification Case

The method guarantees to not throw any exception (on the top level),

if the caller guarantees all preconditions of this specification case.

Wolfgang Ahrendt VSTA 2024 (3) 10

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

Each keyword ending with behavior opens a ‘specification case’.

normal_behavior Specification Case

The method guarantees to not throw any exception (on the top level),
if the caller guarantees all preconditions of this specification case.

Wolfgang Ahrendt VSTA 2024 (3) 10

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has two preconditions (marked by requires)

1. !customerAuthenticated

2. pin == insertedCard.correctPIN

Here:
preconditions are boolean Java expressions

In general:
preconditions are boolean JML expressions (see below)

Wolfgang Ahrendt VSTA 2024 (3) 11

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has two preconditions (marked by requires)

1. !customerAuthenticated

2. pin == insertedCard.correctPIN

Here:
preconditions are boolean Java expressions

In general:
preconditions are boolean JML expressions (see below)

Wolfgang Ahrendt VSTA 2024 (3) 11

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has two preconditions (marked by requires)

1. !customerAuthenticated

2. pin == insertedCard.correctPIN

Here:
preconditions are boolean Java expressions

In general:
preconditions are boolean JML expressions (see below)

Wolfgang Ahrendt VSTA 2024 (3) 11

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has one postcondition (marked by ensures)

▶ customerAuthenticated

Here:
postcondition is boolean Java expressions

In general:
postconditions are boolean JML expressions (see below)

Wolfgang Ahrendt VSTA 2024 (3) 12

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has one postcondition (marked by ensures)

▶ customerAuthenticated

Here:
postcondition is boolean Java expressions

In general:
postconditions are boolean JML expressions (see below)

Wolfgang Ahrendt VSTA 2024 (3) 12

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has one postcondition (marked by ensures)

▶ customerAuthenticated

Here:
postcondition is boolean Java expressions

In general:
postconditions are boolean JML expressions (see below)

Wolfgang Ahrendt VSTA 2024 (3) 12

JML by Example

different specification cases are connected by ‘also’.

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@

@ also

@

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 3;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@*/

public void enterPIN (int pin) {

if (...
Wolfgang Ahrendt VSTA 2024 (3) 13

JML by Example

/*@ <spec-case1> also

@

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 3;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@*/

public void enterPIN (int pin) { ...

For the first time, JML expression not a Java expression.

\old(E) means: E evaluated in the prestate of enterPIN.

E can be any (arbitrarily complex) JML expression.

Wolfgang Ahrendt VSTA 2024 (3) 14

JML by Example

/*@ <spec-case1> also <spec-case2> also

@

@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter >= 3;

@ ensures insertedCard == null;

@ ensures \old(insertedCard).invalid;

@*/

public void enterPIN (int pin) { ...

Two postconditions state that:

“Given the above preconditions, enterPIN guarantees:

insertedCard == null and \old(insertedCard).invalid”
Wolfgang Ahrendt VSTA 2024 (3) 15

JML by Example

Question:

Could it be

@ ensures \old(insertedCard.invalid);

instead of

@ ensures \old(insertedCard).invalid;

??

A: No. The second says that, after the method, the current value of field invalid (of the
object formerly referred to by insertCard) is false.

Wolfgang Ahrendt VSTA 2024 (3) 16

JML by Example

Question:

Could it be

@ ensures \old(insertedCard.invalid);

instead of

@ ensures \old(insertedCard).invalid;

??

A: No. The second says that, after the method, the current value of field invalid (of the
object formerly referred to by insertCard) is false.

Wolfgang Ahrendt VSTA 2024 (3) 16

Specification Cases Complete?

Consider spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

What does spec-case-1 not tell about poststate?

Recall: fields of class ATM:

insertedCard

customerAuthenticated

wrongPINCounter

What happens with insertCard and wrongPINCounter?

Wolfgang Ahrendt VSTA 2024 (3) 17

Specification Cases Complete?

Consider spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

What does spec-case-1 not tell about poststate?

Recall: fields of class ATM:

insertedCard

customerAuthenticated

wrongPINCounter

What happens with insertCard and wrongPINCounter?

Wolfgang Ahrendt VSTA 2024 (3) 17

Specification Cases Complete?

Consider spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

What does spec-case-1 not tell about poststate?

Recall: fields of class ATM:

insertedCard

customerAuthenticated

wrongPINCounter

What happens with insertCard and wrongPINCounter?
Wolfgang Ahrendt VSTA 2024 (3) 17

Assignable Clause

Unsatisfactory to add

JML

@ ensures loc == \old(loc);

JML

for all locations loc which do not change.

Instead:
add assignable clause for all locations which may change

JML

@ assignable loc1,...,locn;

JML

Wolfgang Ahrendt VSTA 2024 (3) 18

Assignable Clause

Unsatisfactory to add

JML

@ ensures loc == \old(loc);

JML

for all locations loc which do not change.

Instead:
add assignable clause for all locations which may change

JML

@ assignable loc1,...,locn;

JML

Wolfgang Ahrendt VSTA 2024 (3) 18

Specification Cases with Assignable

completing spec-case-1:

JML

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@ assignable customerAuthenticated;

JML

Wolfgang Ahrendt VSTA 2024 (3) 19

Specification Cases with Assignable

completing spec-case-2:

JML

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 3;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@ assignable wrongPINCounter;

JML

Wolfgang Ahrendt VSTA 2024 (3) 20

Specification Cases with Assignable

completing spec-case-3:

JML

@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter >= 3;

@ ensures insertedCard == null;

@ ensures \old(insertedCard).invalid;

@ assignable insertedCard,

@ insertedCard.invalid,

JML

Wolfgang Ahrendt VSTA 2024 (3) 21

Assignable Groups

You can specify groups of locations as assignable, using ‘*’.

Example:

@ assignable o.*, a[*];

makes all fields of object o and all positions of array a assignable.

Wolfgang Ahrendt VSTA 2024 (3) 22

JML Modifiers

JML extends the Java modifiers by additional modifiers

The most important ones are:

▶ spec_public

▶ pure

▶ nullable

▶ non_null

▶ helper

Wolfgang Ahrendt VSTA 2024 (3) 23

JML Modifiers: spec_public

In enterPIN example, pre/postconditions made heavy use of class fields

But: public specifications can access only public fields

Not desired: make all fields mentioned in specification public

Control visibility with spec_public

▶ Keep visibility of Java fields private/protected

▶ If needed, make them public in specification, only by spec_public

private /*@ spec_public @*/ BankCard insertedCard = null;

private /*@ spec_public @*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated

= false;

(Alternative solution: use specification-only fields; not covered in this course.)

Wolfgang Ahrendt VSTA 2024 (3) 24

JML Modifiers: spec_public

In enterPIN example, pre/postconditions made heavy use of class fields

But: public specifications can access only public fields

Not desired: make all fields mentioned in specification public

Control visibility with spec_public

▶ Keep visibility of Java fields private/protected

▶ If needed, make them public in specification, only by spec_public

private /*@ spec_public @*/ BankCard insertedCard = null;

private /*@ spec_public @*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated

= false;

(Alternative solution: use specification-only fields; not covered in this course.)

Wolfgang Ahrendt VSTA 2024 (3) 24

JML Modifiers: spec_public

In enterPIN example, pre/postconditions made heavy use of class fields

But: public specifications can access only public fields

Not desired: make all fields mentioned in specification public

Control visibility with spec_public

▶ Keep visibility of Java fields private/protected

▶ If needed, make them public in specification, only by spec_public

private /*@ spec_public @*/ BankCard insertedCard = null;

private /*@ spec_public @*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated

= false;

(Alternative solution: use specification-only fields; not covered in this course.)

Wolfgang Ahrendt VSTA 2024 (3) 24

JML Modifiers: spec_public

In enterPIN example, pre/postconditions made heavy use of class fields

But: public specifications can access only public fields

Not desired: make all fields mentioned in specification public

Control visibility with spec_public

▶ Keep visibility of Java fields private/protected

▶ If needed, make them public in specification, only by spec_public

private /*@ spec_public @*/ BankCard insertedCard = null;

private /*@ spec_public @*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated

= false;

(Alternative solution: use specification-only fields; not covered in this course.)

Wolfgang Ahrendt VSTA 2024 (3) 24

JML Modifiers: Purity

It can be handy to use method calls in JML annotations.

Examples:
o1.equals(o2) li.contains(elem) li1.max() < li2.min()

But: specifications must not themselves change the state!

Definition ((Strictly) Pure method)

A method is pure iff it always terminates and has no visible side effects on existing objects.
A method is strictly pure if it is pure and does not create new objects.

JML expressions may contain calls to (strictly) pure methods.

Pure methods are annotated by pure or strictly_pure resp.

public /*@ pure @*/ int max() { ... }

Wolfgang Ahrendt VSTA 2024 (3) 25

JML Modifiers: Purity

It can be handy to use method calls in JML annotations.

Examples:
o1.equals(o2) li.contains(elem) li1.max() < li2.min()

But: specifications must not themselves change the state!

Definition ((Strictly) Pure method)

A method is pure iff it always terminates and has no visible side effects on existing objects.
A method is strictly pure if it is pure and does not create new objects.

JML expressions may contain calls to (strictly) pure methods.

Pure methods are annotated by pure or strictly_pure resp.

public /*@ pure @*/ int max() { ... }

Wolfgang Ahrendt VSTA 2024 (3) 25

JML Modifiers: Purity

It can be handy to use method calls in JML annotations.

Examples:
o1.equals(o2) li.contains(elem) li1.max() < li2.min()

But: specifications must not themselves change the state!

Definition ((Strictly) Pure method)

A method is pure iff it always terminates and has no visible side effects on existing objects.
A method is strictly pure if it is pure and does not create new objects.

JML expressions may contain calls to (strictly) pure methods.

Pure methods are annotated by pure or strictly_pure resp.

public /*@ pure @*/ int max() { ... }

Wolfgang Ahrendt VSTA 2024 (3) 25

JML Modifiers: Purity

It can be handy to use method calls in JML annotations.

Examples:
o1.equals(o2) li.contains(elem) li1.max() < li2.min()

But: specifications must not themselves change the state!

Definition ((Strictly) Pure method)

A method is pure iff it always terminates and has no visible side effects on existing objects.
A method is strictly pure if it is pure and does not create new objects.

JML expressions may contain calls to (strictly) pure methods.

Pure methods are annotated by pure or strictly_pure resp.

public /*@ pure @*/ int max() { ... }

Wolfgang Ahrendt VSTA 2024 (3) 25

JML Expressions ̸= Java Expressions

boolean JML Expressions (to be completed)

▶ Each side-effect free boolean Java expression is a boolean JML expression

▶ If a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:
▶ !a (“not a”)
▶ a && b (“a and b”)
▶ a || b (“a or b”)

▶ a ==> b (“a implies b”)
▶ a <==> b (“a is equivalent to b”)
▶ ...
▶ ...
▶ ...
▶ ...

Wolfgang Ahrendt VSTA 2024 (3) 26

JML Expressions ̸= Java Expressions

boolean JML Expressions (to be completed)

▶ Each side-effect free boolean Java expression is a boolean JML expression

▶ If a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:
▶ !a (“not a”)
▶ a && b (“a and b”)
▶ a || b (“a or b”)
▶ a ==> b (“a implies b”)
▶ a <==> b (“a is equivalent to b”)
▶ ...
▶ ...
▶ ...
▶ ...

Wolfgang Ahrendt VSTA 2024 (3) 26

Beyond boolean Java expressions

How to express the following?

▶ An array arr only holds values ≤ 9.

▶ The variable m holds the maximum entry of array arr.

▶ All Account objects in the array allAccounts are stored at the index corresponding to
their respective accountNumber field.

▶ All instances of class BankCard have different cardNumbers.

Wolfgang Ahrendt VSTA 2024 (3) 27

Beyond boolean Java expressions

How to express the following?

▶ An array arr only holds values ≤ 9.

▶ The variable m holds the maximum entry of array arr.

▶ All Account objects in the array allAccounts are stored at the index corresponding to
their respective accountNumber field.

▶ All instances of class BankCard have different cardNumbers.

Wolfgang Ahrendt VSTA 2024 (3) 27

Beyond boolean Java expressions

How to express the following?

▶ An array arr only holds values ≤ 9.

▶ The variable m holds the maximum entry of array arr.

▶ All Account objects in the array allAccounts are stored at the index corresponding to
their respective accountNumber field.

▶ All instances of class BankCard have different cardNumbers.

Wolfgang Ahrendt VSTA 2024 (3) 27

Beyond boolean Java expressions

How to express the following?

▶ An array arr only holds values ≤ 9.

▶ The variable m holds the maximum entry of array arr.

▶ All Account objects in the array allAccounts are stored at the index corresponding to
their respective accountNumber field.

▶ All instances of class BankCard have different cardNumbers.

Wolfgang Ahrendt VSTA 2024 (3) 27

First-order Logic in JML Expressions

JML boolean expressions extend Java boolean expressions by:

▶ implication

▶ equivalence

▶ quantification

Wolfgang Ahrendt VSTA 2024 (3) 28

First-order Logic in JML Expressions

JML boolean expressions extend Java boolean expressions by:

▶ implication

▶ equivalence

▶ quantification

Wolfgang Ahrendt VSTA 2024 (3) 28

boolean JML Expressions

boolean JML expressions are defined recursively:

boolean JML Expressions

▶ each side-effect free boolean Java expression is a boolean JML expression

▶ if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:
▶ !a (“not a”)
▶ a && b (“a and b”)
▶ a || b (“a or b”)
▶ a ==> b (“a implies b”)
▶ a <==> b (“a is equivalent to b”)
▶ (\forall t x; a) (“for all x of type t, a holds”)
▶ (\exists t x; a) (“there exists x of type t such that a”)

▶ (\forall t x; a; b) (“for all x of type t fulfilling a, b holds”)
▶ (\exists t x; a; b) (“there exists an x of type t fulfilling a,

such that b”)

Wolfgang Ahrendt VSTA 2024 (3) 29

boolean JML Expressions

boolean JML expressions are defined recursively:

boolean JML Expressions

▶ each side-effect free boolean Java expression is a boolean JML expression

▶ if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:
▶ !a (“not a”)
▶ a && b (“a and b”)
▶ a || b (“a or b”)
▶ a ==> b (“a implies b”)
▶ a <==> b (“a is equivalent to b”)
▶ (\forall t x; a) (“for all x of type t, a holds”)
▶ (\exists t x; a) (“there exists x of type t such that a”)
▶ (\forall t x; a; b) (“for all x of type t fulfilling a, b holds”)
▶ (\exists t x; a; b) (“there exists an x of type t fulfilling a,

such that b”)

Wolfgang Ahrendt VSTA 2024 (3) 29

JML Quantifiers

In

(\forall t x; a; b)

(\exists t x; a; b)

a is called “range predicate”

Range predicates are redundant:

(\forall t x; a; b)

equivalent to
(\forall t x; a ==> b)

(\exists t x; a; b)

equivalent to
(\exists t x; a && b)

Wolfgang Ahrendt VSTA 2024 (3) 30

JML Quantifiers

In

(\forall t x; a; b)

(\exists t x; a; b)

a is called “range predicate”

Range predicates are redundant:

(\forall t x; a; b)

equivalent to
(\forall t x; a ==> b)

(\exists t x; a; b)

equivalent to
(\exists t x; a && b)

Wolfgang Ahrendt VSTA 2024 (3) 30

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

Pragmatics of range predicate:

a is used to restrict range of x further than t

Example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j; 0<=i && i<j && j<10; arr[i] <= arr[j])

Wolfgang Ahrendt VSTA 2024 (3) 31

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

Pragmatics of range predicate:

a is used to restrict range of x further than t

Example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j; 0<=i && i<j && j<10; arr[i] <= arr[j])

Wolfgang Ahrendt VSTA 2024 (3) 31

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

Pragmatics of range predicate:

a is used to restrict range of x further than t

Example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j;

0<=i && i<j && j<10; arr[i] <= arr[j])

Wolfgang Ahrendt VSTA 2024 (3) 31

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

Pragmatics of range predicate:

a is used to restrict range of x further than t

Example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j; 0<=i && i<j && j<10;

arr[i] <= arr[j])

Wolfgang Ahrendt VSTA 2024 (3) 31

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

Pragmatics of range predicate:

a is used to restrict range of x further than t

Example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j; 0<=i && i<j && j<10; arr[i] <= arr[j])

Wolfgang Ahrendt VSTA 2024 (3) 31

Using Quantified JML expressions

How to express:

▶ An array arr only holds values ≤ 9.

JML

(\forall int i; 0 <= i && i < arr.length; arr[i] <= 9)

JML

Wolfgang Ahrendt VSTA 2024 (3) 32

Using Quantified JML expressions

How to express:

▶ An array arr only holds values ≤ 9.

JML

(\forall int i;

0 <= i && i < arr.length; arr[i] <= 9)

JML

Wolfgang Ahrendt VSTA 2024 (3) 32

Using Quantified JML expressions

How to express:

▶ An array arr only holds values ≤ 9.

JML

(\forall int i; 0 <= i && i < arr.length;

arr[i] <= 9)

JML

Wolfgang Ahrendt VSTA 2024 (3) 32

Using Quantified JML expressions

How to express:

▶ An array arr only holds values ≤ 9.

JML

(\forall int i; 0 <= i && i < arr.length; arr[i] <= 9)

JML

Wolfgang Ahrendt VSTA 2024 (3) 32

Using Quantified JML expressions

How to express:

▶ The variable m holds the maximum entry of array arr.

JML

(\forall int i; 0 <= i && i < arr.length; m >= arr[i])

JML

is this enough?

JML

(\exists int i; 0 <= i && i < arr.length; m == arr[i])

JML

Wolfgang Ahrendt VSTA 2024 (3) 33

Using Quantified JML expressions

How to express:

▶ The variable m holds the maximum entry of array arr.

JML

(\forall int i; 0 <= i && i < arr.length; m >= arr[i])

JML

is this enough?

JML

(\exists int i; 0 <= i && i < arr.length; m == arr[i])

JML

Wolfgang Ahrendt VSTA 2024 (3) 33

Using Quantified JML expressions

How to express:

▶ The variable m holds the maximum entry of array arr.

JML

(\forall int i; 0 <= i && i < arr.length; m >= arr[i])

JML

is this enough?

JML

(\exists int i; 0 <= i && i < arr.length; m == arr[i])

JML

Wolfgang Ahrendt VSTA 2024 (3) 33

Using Quantified JML expressions

How to express:

▶ The variable m holds the maximum entry of array arr.

JML

(\forall int i; 0 <= i && i < arr.length; m >= arr[i])

JML

is this enough?

JML

(\exists int i; 0 <= i && i < arr.length; m == arr[i])

JML

Wolfgang Ahrendt VSTA 2024 (3) 33

Using Quantified JML expressions

How to express:

▶ All Account objects in the array accountArray are stored at the index corresponding to
their respective accountNumber field.

JML

(\forall int i; 0 <= i && i < maxAccountNumber;

accountArray[i].accountNumber == i)

JML

Wolfgang Ahrendt VSTA 2024 (3) 34

Using Quantified JML expressions

How to express:

▶ All Account objects in the array accountArray are stored at the index corresponding to
their respective accountNumber field.

JML

(\forall int i; 0 <= i && i < maxAccountNumber;

accountArray[i].accountNumber == i)

JML

Wolfgang Ahrendt VSTA 2024 (3) 34

Using Quantified JML expressions

How to express:

▶ All existing instances of class BankCard have different cardNumbers.

JML

(\forall BankCard p1, p2;

p1 != p2 ==> p1.cardNumber != p2.cardNumber)

JML

Wolfgang Ahrendt VSTA 2024 (3) 35

Using Quantified JML expressions

How to express:

▶ All existing instances of class BankCard have different cardNumbers.

JML

(\forall BankCard p1, p2;

p1 != p2 ==> p1.cardNumber != p2.cardNumber)

JML

Wolfgang Ahrendt VSTA 2024 (3) 35

Example: Specifying LimitedIntegerSet

public class LimitedIntegerSet {

public final int limit;

private int arr[];

private int size = 0;

public LimitedIntegerSet(int limit) {

this.limit = limit;

this.arr = new int[limit];

}

public boolean add(int elem) {/*...*/}

public void remove(int elem) {/*...*/}

public boolean contains(int elem) {/*...*/}

// other methods

}
Wolfgang Ahrendt VSTA 2024 (3) 36

Prerequisites: Adding Specification Modifiers

public class LimitedIntegerSet {

public final int limit;

private /*@ spec_public @*/ int arr[];

private /*@ spec_public @*/ int size = 0;

public LimitedIntegerSet(int limit) {

this.limit = limit;

this.arr = new int[limit];

}

public boolean add(int elem) {/*...*/}

public void remove(int elem) {/*...*/}

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

// other methods

}
Wolfgang Ahrendt VSTA 2024 (3) 37

Specifying contains()

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

contains is pure: no effect on the state + terminates normally

How to specify result value?

Wolfgang Ahrendt VSTA 2024 (3) 38

Specifying contains()

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

contains is pure: no effect on the state + terminates normally

How to specify result value?

Wolfgang Ahrendt VSTA 2024 (3) 38

Specifying contains()

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

contains is pure: no effect on the state + terminates normally

How to specify result value?

Wolfgang Ahrendt VSTA 2024 (3) 38

Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result ==

(\exists int i;

@ 0 <= i && i < size;

@ arr[i] == elem);

@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

Wolfgang Ahrendt VSTA 2024 (3) 39

Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result == (\exists int i;

@

0 <= i && i < size;

@ arr[i] == elem);

@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

Wolfgang Ahrendt VSTA 2024 (3) 39

Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result == (\exists int i;

@ 0 <= i && i < size;

@

arr[i] == elem);

@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

Wolfgang Ahrendt VSTA 2024 (3) 39

Result Values in Postcondition

In postconditions,
one can use ‘\result’ to refer to the return value of the method.

/*@ public normal_behavior

@ ensures \result == (\exists int i;

@ 0 <= i && i < size;

@ arr[i] == elem);

@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

Wolfgang Ahrendt VSTA 2024 (3) 39

Specifying add() (spec-case1) – new element can be added

/*@ public normal_behavior

@ requires size < limit && !contains(elem);

@ ensures \result == true;

@ ensures contains(elem);

@ ensures (\forall int e;

@ e != elem;

@ contains(e) <==> \old(contains(e)));

@ ensures size == \old(size) + 1;

@

@ also

@

@ <spec-case2>

@*/

public boolean add(int elem) {/*...*/}

Wolfgang Ahrendt VSTA 2024 (3) 40

Specifying add() (spec-case2) – new element cannot be added

/*@ public normal_behavior

@

@ <spec-case1>

@

@ also

@

@ public normal_behavior

@ requires (size == limit) contains(elem);

@ ensures \result == false;

@ ensures (\forall int e;

@ contains(e) <==> \old(contains(e)));

@ ensures size == \old(size);

@*/

public boolean add(int elem) {/*...*/}

Wolfgang Ahrendt VSTA 2024 (3) 41

Specifying remove()

/*@ public normal_behavior

@ ensures !contains(elem);

@ ensures (\forall int e;

@ e != elem;

@ contains(e) <==> \old(contains(e)));

@ ensures \old(contains(elem))

@ ==> size == \old(size) - 1;

@ ensures !\old(contains(elem))

@ ==> size == \old(size);

@*/

public void remove(int elem) {/*...*/}

Wolfgang Ahrendt VSTA 2024 (3) 42

Specifying Data Constraints

So far:
JML used to specify method specifics.

How to specify constraints on data, e.g.:

▶ consistency of redundant data representations (like indexing)

▶ restrictions for efficiency (like sortedness)

Data constraints are global: all methods must preserve them

Wolfgang Ahrendt VSTA 2024 (3) 43

Specifying Data Constraints

So far:
JML used to specify method specifics.

How to specify constraints on data?

, e.g.:

▶ consistency of redundant data representations (like indexing)

▶ restrictions for efficiency (like sortedness)

Data constraints are global: all methods must preserve them

Wolfgang Ahrendt VSTA 2024 (3) 43

Specifying Data Constraints

So far:
JML used to specify method specifics.

How to specify constraints on data, e.g.:

▶ consistency of redundant data representations (like indexing)

▶ restrictions for efficiency (like sortedness)

Data constraints are global: all methods must preserve them

Wolfgang Ahrendt VSTA 2024 (3) 43

Specifying Data Constraints

So far:
JML used to specify method specifics.

How to specify constraints on data, e.g.:

▶ consistency of redundant data representations (like indexing)

▶ restrictions for efficiency (like sortedness)

Data constraints are global: all methods must preserve them

Wolfgang Ahrendt VSTA 2024 (3) 43

Consider LimitedSorted IntegerSet

public class LimitedSortedIntegerSet {

public final int limit;

private int arr[];

private int size = 0;

public LimitedSortedIntegerSet(int limit) {

this.limit = limit;

this.arr = new int[limit];

}

public boolean add(int elem) {/*...*/}

public void remove(int elem) {/*...*/}

public boolean contains(int elem) {/*...*/}

// other methods

}
Wolfgang Ahrendt VSTA 2024 (3) 44

Consequence of Sortedness for Implementer

method contains

▶ Can employ binary search (logarithmic complexity)

▶ Why does that even work?

▶ We assume sortedness in prestate

method add

▶ Search first index with bigger element, insert just before that

▶ Thereby try to establish sortedness in poststate

▶ Why is that sufficient?

▶ We assume sortedness in prestate

method remove

▶ (accordingly)

Wolfgang Ahrendt VSTA 2024 (3) 45

Consequence of Sortedness for Implementer

method contains

▶ Can employ binary search (logarithmic complexity)

▶ Why does that even work?

▶ We assume sortedness in prestate

method add

▶ Search first index with bigger element, insert just before that

▶ Thereby try to establish sortedness in poststate

▶ Why is that sufficient?

▶ We assume sortedness in prestate

method remove

▶ (accordingly)

Wolfgang Ahrendt VSTA 2024 (3) 45

Consequence of Sortedness for Implementer

method contains

▶ Can employ binary search (logarithmic complexity)

▶ Why does that even work?

▶ We assume sortedness in prestate

method add

▶ Search first index with bigger element, insert just before that

▶ Thereby try to establish sortedness in poststate

▶ Why is that sufficient?

▶ We assume sortedness in prestate

method remove

▶ (accordingly)

Wolfgang Ahrendt VSTA 2024 (3) 45

Consequence of Sortedness for Implementer

method contains

▶ Can employ binary search (logarithmic complexity)

▶ Why does that even work?

▶ We assume sortedness in prestate

method add

▶ Search first index with bigger element, insert just before that

▶ Thereby try to establish sortedness in poststate

▶ Why is that sufficient?

▶ We assume sortedness in prestate

method remove

▶ (accordingly)

Wolfgang Ahrendt VSTA 2024 (3) 45

Consequence of Sortedness for Implementer

method contains

▶ Can employ binary search (logarithmic complexity)

▶ Why does that even work?

▶ We assume sortedness in prestate

method add

▶ Search first index with bigger element, insert just before that

▶ Thereby try to establish sortedness in poststate

▶ Why is that sufficient?

▶ We assume sortedness in prestate

method remove

▶ (accordingly)

Wolfgang Ahrendt VSTA 2024 (3) 45

Consequence of Sortedness for Implementer

method contains

▶ Can employ binary search (logarithmic complexity)

▶ Why does that even work?

▶ We assume sortedness in prestate

method add

▶ Search first index with bigger element, insert just before that

▶ Thereby try to establish sortedness in poststate

▶ Why is that sufficient?

▶ We assume sortedness in prestate

method remove

▶ (accordingly)

Wolfgang Ahrendt VSTA 2024 (3) 45

Consequence of Sortedness for Implementer

method contains

▶ Can employ binary search (logarithmic complexity)

▶ Why does that even work?

▶ We assume sortedness in prestate

method add

▶ Search first index with bigger element, insert just before that

▶ Thereby try to establish sortedness in poststate

▶ Why is that sufficient?

▶ We assume sortedness in prestate

method remove

▶ (accordingly)

Wolfgang Ahrendt VSTA 2024 (3) 45

Consequence of Sortedness for Implementer

method contains

▶ Can employ binary search (logarithmic complexity)

▶ Why does that even work?

▶ We assume sortedness in prestate

method add

▶ Search first index with bigger element, insert just before that

▶ Thereby try to establish sortedness in poststate

▶ Why is that sufficient?

▶ We assume sortedness in prestate

method remove

▶ (accordingly)

Wolfgang Ahrendt VSTA 2024 (3) 45

Specifying Sortedness with JML

Recall class fields:

public final int limit;

private int arr[];

private int size = 0;

Sortedness as JML expression:

(\forall int i; 0 < i && i < size;

arr[i-1] <= arr[i])

(What’s the value of this if size < 2?)

But where in the specification does the red expression go?

Wolfgang Ahrendt VSTA 2024 (3) 46

Specifying Sortedness with JML

Recall class fields:

public final int limit;

private int arr[];

private int size = 0;

Sortedness as JML expression:

(\forall int i; 0 < i && i < size;

arr[i-1] <= arr[i])

(What’s the value of this if size < 2?)

But where in the specification does the red expression go?

Wolfgang Ahrendt VSTA 2024 (3) 46

Specifying Sortedness with JML

Recall class fields:

public final int limit;

private int arr[];

private int size = 0;

Sortedness as JML expression:

(\forall int i; 0 < i && i < size;

arr[i-1] <= arr[i])

(What’s the value of this if size < 2?)

But where in the specification does the red expression go?

Wolfgang Ahrendt VSTA 2024 (3) 46

Specifying Sortedness with JML

Recall class fields:

public final int limit;

private int arr[];

private int size = 0;

Sortedness as JML expression:

(\forall int i; 0 < i && i < size;

arr[i-1] <= arr[i])

(What’s the value of this if size < 2?)

But where in the specification does the red expression go?

Wolfgang Ahrendt VSTA 2024 (3) 46

Specifying Sorted contains()

Can assume sortedness of prestate

/*@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@ ensures \result == (\exists int i;

@ 0 <= i && i < size;

@ arr[i] == elem);

@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

contains() is pure
⇒ sortedness of poststate trivially ensured

Wolfgang Ahrendt VSTA 2024 (3) 47

Specifying Sorted contains()

Can assume sortedness of prestate

/*@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@ ensures \result == (\exists int i;

@ 0 <= i && i < size;

@ arr[i] == elem);

@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

contains() is pure
⇒ sortedness of poststate trivially ensured

Wolfgang Ahrendt VSTA 2024 (3) 47

Specifying Sorted contains()

Can assume sortedness of prestate

/*@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@ ensures \result == (\exists int i;

@ 0 <= i && i < size;

@ arr[i] == elem);

@*/

public /*@ pure @*/ boolean contains(int elem) {/*...*/}

contains() is pure
⇒ sortedness of poststate trivially ensured

Wolfgang Ahrendt VSTA 2024 (3) 47

Specifying Sorted remove()

Can assume sortedness of prestate. Must ensure sortedness of poststate

/*@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@ ensures !contains(elem);

@ ensures (\forall int e; e != elem;

@ contains(e) <==> \old(contains(e)));

@ ensures \old(contains(elem))

@ ==> size == \old(size) - 1;

@ ensures !\old(contains(elem))

@ ==> size == \old(size);

@ ensures (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@*/

public void remove(int elem) {/*...*/}

Wolfgang Ahrendt VSTA 2024 (3) 48

Specifying Sorted add() (spec-case1) – can add

/*@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@ requires size < limit && !contains(elem);

@ ensures \result == true;

@ ensures contains(elem);

@ ensures (\forall int e; e != elem;

@ contains(e) <==> \old(contains(e)));

@ ensures size == \old(size) + 1;

@ ensures (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@

@ also <spec-case2>

@*/

public boolean add(int elem) {/*...*/}

Wolfgang Ahrendt VSTA 2024 (3) 49

Specifying Sorted add() (spec-case2) – cannot add

/*@ public normal_behavior

@

@ <spec-case1> also

@

@ public normal_behavior

@ requires (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@ requires (size == limit) contains(elem);

@ ensures \result == false;

@ ensures (\forall int e; contains(e) <==> \old(contains(e)));

@ ensures size == \old(size);

@ ensures (\forall int i; 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@*/

public boolean add(int elem) {/*...*/}

Wolfgang Ahrendt VSTA 2024 (3) 50

Factor out Sortedness

So far: ‘sortedness’ has swamped our specification

We can do better, using

JML Class Invariant

construct for specifying data constraints centrally

1. delete blue and red parts from previous slides

2. add ‘sortedness’ as JML class invariant instead

Wolfgang Ahrendt VSTA 2024 (3) 51

Factor out Sortedness

So far: ‘sortedness’ has swamped our specification

We can do better, using

JML Class Invariant

construct for specifying data constraints centrally

1. delete blue and red parts from previous slides

2. add ‘sortedness’ as JML class invariant instead

Wolfgang Ahrendt VSTA 2024 (3) 51

Factor out Sortedness

So far: ‘sortedness’ has swamped our specification

We can do better, using

JML Class Invariant

construct for specifying data constraints centrally

1. delete blue and red parts from previous slides

2. add ‘sortedness’ as JML class invariant instead

Wolfgang Ahrendt VSTA 2024 (3) 51

JML Class Invariant

public class LimitedSortedIntegerSet {

public final int limit;

/*@ private invariant (\forall int i;

@ 0 < i && i < size;

@ arr[i-1] <= arr[i]);

@*/

private /*@ spec_public @*/ int arr[];

private /*@ spec_public @*/ int size = 0;

// constructor and methods,

// without sortedness in pre/postconditions

}

Wolfgang Ahrendt VSTA 2024 (3) 52

Revisit Specification of enterPIN()

private /*@ spec_public @*/ BankCard insertedCard = null;

private /*@ spec_public @*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated

= false;

/*@ <spec-case1> also <spec-case2> also <spec-case3>

@*/

public void enterPIN (int pin) { ...

so far:
all 3 spec-cases were normal_behavior

Wolfgang Ahrendt VSTA 2024 (3) 53

Revisit Specification of enterPIN()

private /*@ spec_public @*/ BankCard insertedCard = null;

private /*@ spec_public @*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated

= false;

/*@ <spec-case1> also <spec-case2> also <spec-case3>

@*/

public void enterPIN (int pin) { ...

so far:
all 3 spec-cases were normal_behavior

Wolfgang Ahrendt VSTA 2024 (3) 53

Specifying Exceptional Behavior of Methods

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if prestate satisfies P

exceptional_behavior specification case, with preconditions P,
requires method to throw exceptions if prestate satisfies P

Keyword signals specifies poststate, depending on thrown exception

Keyword signals_only limits types of thrown exception

Wolfgang Ahrendt VSTA 2024 (3) 54

Specifying Exceptional Behavior of Methods

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if prestate satisfies P

exceptional_behavior specification case, with preconditions P,
requires method to throw exceptions if prestate satisfies P

Keyword signals specifies poststate, depending on thrown exception

Keyword signals_only limits types of thrown exception

Wolfgang Ahrendt VSTA 2024 (3) 54

Specifying Exceptional Behavior of Methods

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if prestate satisfies P

exceptional_behavior specification case, with preconditions P,
requires method to throw exceptions if prestate satisfies P

Keyword signals specifies poststate, depending on thrown exception

Keyword signals_only limits types of thrown exception

Wolfgang Ahrendt VSTA 2024 (3) 54

Specifying Exceptional Behavior of Methods

normal_behavior specification case, with preconditions P,
forbids method to throw exceptions if prestate satisfies P

exceptional_behavior specification case, with preconditions P,
requires method to throw exceptions if prestate satisfies P

Keyword signals specifies poststate, depending on thrown exception

Keyword signals_only limits types of thrown exception

Wolfgang Ahrendt VSTA 2024 (3) 54

Completing Specification of enterPIN()

/*@ <spec-case1> also <spec-case2> also <spec-case3> also

@

@ public exceptional_behavior

@ requires insertedCard == null;

@ signals_only ATMException;

@ signals (ATMException) !customerAuthenticated;

@*/

public void enterPIN (int pin) { ...

In case insertedCard == null in prestate:

▶ enterPIN must throw an exception (‘exceptional_behavior’)

▶ it can only be an ATMException (‘signals_only’)

▶ method must then ensure !customerAuthenticated in poststate (‘signals’)

Wolfgang Ahrendt VSTA 2024 (3) 55

Completing Specification of enterPIN()

/*@ <spec-case1> also <spec-case2> also <spec-case3> also

@

@ public exceptional_behavior

@ requires insertedCard == null;

@ signals_only ATMException;

@ signals (ATMException) !customerAuthenticated;

@*/

public void enterPIN (int pin) { ...

In case insertedCard == null in prestate:

▶ enterPIN must throw an exception (‘exceptional_behavior’)

▶ it can only be an ATMException (‘signals_only’)

▶ method must then ensure !customerAuthenticated in poststate (‘signals’)

Wolfgang Ahrendt VSTA 2024 (3) 55

Allowing Non-Termination

▶ normal_behavior

▶ exceptional_behavior

both enforce termination by default

In each specification case, non-termination can be permitted via the clause

diverges true;

Meaning:

Given the precondition of the specification case holds in prestate,
the method may or may not terminate

Wolfgang Ahrendt VSTA 2024 (3) 56

Allowing Non-Termination

▶ normal_behavior

▶ exceptional_behavior

both enforce termination by default

In each specification case, non-termination can be permitted via the clause

diverges true;

Meaning:

Given the precondition of the specification case holds in prestate,
the method may or may not terminate

Wolfgang Ahrendt VSTA 2024 (3) 56

Allowing Non-Termination

▶ normal_behavior

▶ exceptional_behavior

both enforce termination by default

In each specification case, non-termination can be permitted via the clause

diverges true;

Meaning:

Given the precondition of the specification case holds in prestate,
the method may or may not terminate

Wolfgang Ahrendt VSTA 2024 (3) 56

Further Modifiers: non_null and nullable

JML extends the Java modifiers by further modifiers:

▶ class fields

▶ method parameters

▶ method return types

can be declared as

▶ nullable: may or may not be null

▶ non_null: must not be null

Wolfgang Ahrendt VSTA 2024 (3) 57

non_null: Examples

private /*@ spec_public non_null @*/ String name;

Implicit invariant ‘public invariant name != null;’
added to class

public void insertCard(/*@ non_null @*/ BankCard card) {..

Implicit precondition ‘requires card != null;’
added to each specification case of insertCard

public /*@ non_null @*/ String toString()

Implicit postcondition ‘ensures \result != null;’
added to each specification case of toString

Wolfgang Ahrendt VSTA 2024 (3) 58

non_null: Examples

private /*@ spec_public non_null @*/ String name;

Implicit invariant ‘public invariant name != null;’
added to class

public void insertCard(/*@ non_null @*/ BankCard card) {..

Implicit precondition ‘requires card != null;’
added to each specification case of insertCard

public /*@ non_null @*/ String toString()

Implicit postcondition ‘ensures \result != null;’
added to each specification case of toString

Wolfgang Ahrendt VSTA 2024 (3) 58

non_null: Examples

private /*@ spec_public non_null @*/ String name;

Implicit invariant ‘public invariant name != null;’
added to class

public void insertCard(/*@ non_null @*/ BankCard card) {..

Implicit precondition ‘requires card != null;’
added to each specification case of insertCard

public /*@ non_null @*/ String toString()

Implicit postcondition ‘ensures \result != null;’
added to each specification case of toString

Wolfgang Ahrendt VSTA 2024 (3) 58

non_null Default

non_null is default in JML!

⇒ same effect even without explicit ‘non null’s

private /*@ spec_public @*/ String name;

Implicit invariant ‘public invariant name != null;’
added to class

public void insertCard(BankCard card) {..

Implicit precondition ‘requires card != null;’
added to each specification case of insertCard

public String toString()

Implicit postcondition ‘ensures \result != null;’
added to each specification case of toString

Wolfgang Ahrendt VSTA 2024 (3) 59

nullable: Examples

To prevent such pre/postconditions and invariants: ‘nullable’

private /*@ spec_public nullable @*/ String name;

No implicit invariant added

public void insertCard(/*@ nullable @*/ BankCard card) {..

No implicit precondition added

public /*@ nullable @*/ String toString()

No implicit postcondition added to specification cases of toString

Wolfgang Ahrendt VSTA 2024 (3) 60

LinkedList: non_null or nullable?

public class LinkedList {

private Object elem;

private LinkedList next;

....

In JML this means:

▶ All elements in the list are non_null

▶ The list is cyclic, or infinite!

Wolfgang Ahrendt VSTA 2024 (3) 61

LinkedList: non_null or nullable?

public class LinkedList {

private Object elem;

private LinkedList next;

....

In JML this means:

▶ All elements in the list are non_null

▶ The list is cyclic, or infinite!

Wolfgang Ahrendt VSTA 2024 (3) 61

LinkedList: non_null or nullable?

public class LinkedList {

private Object elem;

private LinkedList next;

....

In JML this means:

▶ All elements in the list are non_null

▶ The list is cyclic, or infinite!

Wolfgang Ahrendt VSTA 2024 (3) 61

LinkedList: non_null or nullable?

Repair:

public class LinkedList {

private Object elem;

private /*@ nullable @*/ LinkedList next;

....

⇒ Now, the list is allowed to end somewhere!

Wolfgang Ahrendt VSTA 2024 (3) 62

	Java Modeling Language
	Running Example
	Informal Specification
	JML by Example
	Assignable Locations
	JML Modifiers
	JML Expressions
	First-Order in Specifications
	Result Values
	Data Constraints
	JML Invariants
	Exceptional Method Behavior
	Allowing Non-Termination
	JML Modifiers II

