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Context – my team’s recent & not so recent work...
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Context – new area of research, since circa 2018...

2 / 144



Context – new area of research, since circa 2018...

Enhancing ML by
exploiting AR & FM !
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Recent & ongoing ML successes
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Can we trust ML models?

• Accuracy in training/test data

• Complex ML models are brittle
• Extensive work on finding adversarial examples
• Extensive work on learning robust ML models

• More recently, complex ML models hallucinate

• One must be able to validate operation of ML model, with rigor
• Explanations; robustness; verification
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ML models are brittle — adversarial examples
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ML models are brittle — adversarial examples

http://g
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Adversarial examples can be very problematic

Finlayson et al., Nature 2019
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eXplainable AI (XAI)

• Complex ML models are opaque
• Goal of XAI: to help humans understand ML models
• Many questions to address:

• Properties of explanations
• How to be human understandable?
• How to answer Why? questions? I.e. Why the prediction?
• How to answer Why Not? questions? I.e. Why not some other prediction?
• Which guarantees of rigor?

• Other queries: enumeration, membership, preferences, etc.
• Links with robustness, fairness, model learning
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Importance of XAI

©DARPA
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Importance of XAI

©DARPA
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XAI & EU guidelines (AI HLEG)
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XAI & the principle of explicability

& thousands of recent papers!
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XAI for high-risk & safety-critical applications

• High-risk (EU regulations, hopefully soon...): [EU21]

• Law enforcement
• Management and operation of critical infrastructure
• Biometric identification and categorization of people
• ...

• And safety-critical:
• Self-driving cars
• Autonomous vehicles
• Autonomous aereal devices
• ...

• Correctness of explanations is paramount!
• To build trust
• To help debug AI systems
• To prevent (catastrophic) accidents
• ...

MINIMAL RISK

LIMITED RISK

HIGH RISK

UNACCEPTABLE RISK

RISK IN AI SYSTEMS
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XAI for high-risk & safety-critical applications

• High-risk (EU regulations, hopefully soon...): [EU21]

• Law enforcement
• Management and operation of critical infrastructure
• Biometric identification and categorization of people
• ...

• And safety-critical:
• Self-driving cars
• Autonomous vehicles
• Autonomous aereal devices
• ...

• Correctness of explanations is paramount!
• To build trust
• To help debug AI systems
• To prevent (catastrophic) accidents
• ...

MINIMAL RISK

LIMITED RISK

HIGH RISK

UNACCEPTABLE RISK

RISK IN AI SYSTEMS

Main motivation
for our work !
(since 2019)
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Can we trust (non-symbolic) XAI? – some questions

• Many proposed solutions for XAI
• Most, and the better-known, are heuristic
• I.e. no guarantees of rigor

• Many proposed uses of XAI
• Regular complaints about issues with existing (heuristic) methods of XAI

• Q: Can heuristic XAI be trusted in high-risk and/or safety-critical domains?
• Q: Can we validate results of heuristic XAI?
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What have we been up to? 1. Created the field of symbolic (formal) XAI – I

[MI22, Mar22, MS23, Mar24]

• Rigorous, logic-based, definitions of explanations

• Relationship with abduction – abductive explanations (AXps)
• Contrastive explanations (CXps) [Mil19]

• Duality between AXps & CXps

• AXps are MHSes of CXps and vice-versa

• Tractability results

• Devised efficient poly-time algorithms

• Intractability results

• Devised efficient methods
• Links with automated reasoners

• Wealth of computational problems related with AXps/CXps
NBCs

Monotonic

d-DNNF

GDFs

DTs
XpGs

DLs

RFs
BTs

NNs

BNs

Practical scalability (effectiveness)
Effective Ineffective
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What have we been up to? 1. Created the field of symbolic (formal) XAI – II

[MI22, Mar22, MS23, Mar24]

2019 2020 2021 2022 2023

XP definitions

AXp, CXp, duality

Tractability

DTs, NBCs, etc.

Efficient solutions

RFs, DLs, BTs, etc.

Queries

Member., Enum., etc.

Input distrib.

Inp. constr.

Prob. XPs

DTs, NBCs, etc.

New topics

Distil., etc.
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What have we been up to? 2. Uncovered key myths of non-symbolic XAI – I

[RSG16, LL17, RSG18, Rud19]
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What have we been up to? 2. Uncovered key myths of non-symbolic XAI – II

[MSH24, HMS24, HM23c]
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Plan for this short course

• 1st day:
• Part #0a: Motivation
• Part #1: Foundations
• Part #2: Principles of symbolic XAI – feature selection (& myth of interpretability)
• Part #3: Tractable symbolic XAI
• Part #4: Intractable symbolic XAI (& myth of model-agnostic XAI)

• Q&A

• 2nd day:
• Part #0b: Recapitulate
• Part #5: Explainability queries
• Part #6: Advanced topics
• Part #7: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• Part #8: Conclusions & research directions

• Q&A
15 / 144



Part 1

Foundations



Classification problems

• Set of features F = t1, 2, . . . ,mu, each feature i taking values from domain Di
• Features can be categorical, discrete or real-valued
• Feature space: F = Πm

i=1Di

• Set of classes K = tc1, . . . , cKu

• ML modelMC computes a (non-constant) classification function κ : F Ñ K
• MC is a tuple (F ,F,K, κ)

• Instance (v, c) for point v = (v1, . . . , vm) P F, with prediction c = κ(v), c P K
• Goal: to compute explanations for (v, c)
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Regression problems

• For regression problems:
• Codomain: V
• Regression function: ρ : F Ñ V (non-constant)
• ML model: MR is a tuple (F ,F,V, ρ)

• General ML model:
• T: range of possible predictions
• Non-constant function τ : F Ñ T

• ML model: M is a tuple (F ,F,T, τ)

• Instance: (v,q), q P T
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Example ML models – classification – decision trees (DTs)

x1

Y x2

x3

x1

Y N

Y

N

P t4..MxPu P t0..3u

P tMnA..25u

P t0u

P t2, 3u P t0, 1u

P t1u

P t26..MxAu

1

2
3

4

6

8 9

7

5

• Literals in DTs can use = or P
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Example ML models – regression – regression trees (RTs)

x1

x3

x2

9/2 9/4

0

1/2

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

• Literals in RTs can use = or P
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Example ML models – classification – rules

• Ordered rules – decision lists (DLs):

IF x1 ^ x2 THEN predict Y
ELSE IF ␣x2 _ x3 THEN predict N
ELSE THEN predict Y
F = t1, 2u;D1 = D2 = t0, 1u;K = tY,Nu

• Unordered rules – decision sets (DSs):

IF x1 + x2 ě 0 THEN predict ‘

IF x1 + x2 ă 0 THEN predict a

F = t1, 2u;D1 = D2 = R;K = t‘ , au

• Issues of DSs: overlap; incomplete coverage
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Example ML models – classification – random forests (RFs)

x1

x2

0 2

1

P t0, 1u

P t0, 2u P t1u

P t2u
1

2

4 5

3

x1

x2

1 2

x3

1 0

P t0u

P t0, 1u P t2u

P t1, 2u

P t0u P t1, 2u

1

2

4 5

3

6 7

x1

0 x3

2 1

P t1, 2u P t0u

P t0, 1u P t2u

1

2
3

4 5

• For each input, each DT picks a class
• Result uses majority or weighted voting of the DTs
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Example ML models – classification – neural networks (NNs)

x0 = 1

x1

x2

ř

Sum

r1 =
řn
i=0 wixi

-0.5

+1

+1Inputs

ReLU

y1 = max(r1, 0)

r1 y1

y1 = max(x1 + x2 ´ 0.5, 0)

o1 = ITE(y1 ą 0, 1, 0)
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Outline – Part 1

ML Models: Classification & Regression Problems

Brief Glimpse of Logic

Reasoning About ML Models

Basics of (non-symbolic) XAI

Consequences of Intrinsic Interpretability



Standard tools of the trade

• SAT: decision problem for propositional logic
• Formulas most often represented in CNF
• There are optimization variants: MaxSAT, PBO, MinSAT, etc.
• There are quantified variants: QBF, QMaxSAT, etc.

• SMT: decision problem for (decidable) fragments of first-order logic (FOL)
• There are optimization variants: MaxSMT, etc.
• There are quantified variants

• MILP: decision/optimization problems defined on conjunctions of linear inequalities over
integer & real-valued variables

• CP: constraint programming
• There are optimization/quantified variants

• Background on SAT/SMT: [BHvMW09]

• https://alexeyignatiev.github.io/ssa-school-2019/
• https://alexeyignatiev.github.io/ijcai19tut/

23 / 144

https://alexeyignatiev.github.io/ssa-school-2019/
https://alexeyignatiev.github.io/ijcai19tut/


Standard tools of the trade

• SAT: decision problem for propositional logic
• Formulas most often represented in CNF
• There are optimization variants: MaxSAT, PBO, MinSAT, etc.
• There are quantified variants: QBF, QMaxSAT, etc.

• SMT: decision problem for (decidable) fragments of first-order logic (FOL)
• There are optimization variants: MaxSMT, etc.
• There are quantified variants

• MILP: decision/optimization problems defined on conjunctions of linear inequalities over
integer & real-valued variables

• CP: constraint programming
• There are optimization/quantified variants

• Background on SAT/SMT: [BHvMW09]
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Basic knowledge on
SAT & SMT assumed.
See links below.
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Basic definitions in propositional logic

• Variables (tx, x1, . . .u) & literals (x1,␣x1)

• Well-formed formulas using ␣, ^,_, . . .

• Clause: disjunction of literals

• Term: conjunction of literals

• Conjunctive normal form (CNF): conjunction of clauses

• Disjunctive normal form (DNF): disjunction of terms

• Simple to generalize to more expressive domains

24 / 144



Entailment

• Let φ represent some formula, defined on feature space F, and representing a function
φ : FÑ t0, 1u

• Let τ represent some other formula, also defined on F, and with τ : FÑ t0, 1u

• We say that τ entails φ, written as τ ( φ, if:

@(x P F).[τ(x)Ñφ(x)]

• An example:
• F = t0, 1u2

• φ(x1, x2) = x1 _␣x2
• Clearly, x1( φ and ␣x2( φ

• Another example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2( φ and x1 ^ x3( φ
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Prime implicants & implicates

• A conjunction of literals π (which will be viewed as a set of literals where convenient) is a
prime implicant of some function φ if,
1. π( φ

2. For any π1 Ĺ π, π1* φ

• Example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2( φ

• Also, x1* φ and x2* φ

• A disjunction of literals η (also viewed as a set of literals where convenient) is a prime
implicate of some function φ if
1. φ( η

2. For any η1 Ĺ η, φ* η1
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Reasoning about inconsistency [MM20]

• Formula T = B Y S , with
• B: background knowledge (base), i.e. hard constraints
• S : additional (inconsistent) knowledge, i.e. soft constraints
• And, T ( K
• E.g. B = t(x1 _ x2), (x1 _␣x3)u, S = t(␣x1), (␣x2), (x3)u

• Minimal unsatisfiable subset (MUS):
• Subset-minimal set U Ď S , s.t. B Y U ( K
• E.g. U = t(␣x1), (␣x2)u

• Minimal correction subset (MCS):
• Subset-minimal set C Ď S , s.t. B Y (SzC)* K
• E.g. C = t(␣x1)u

• Duality:
• MUSes are minimal-hitting sets (MHSes) of the MCSes, and vice-versa [Rei87]

• Variants:
• Smallest(-cost) MCS, i.e. complement of maximum(-cost) satisfiability (MaxSAT)
• Smallest(-cost) MUS
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SAT/SMT/MILP/CP solvers used as oracles

• Deciding satisfiability, entailment

• Computing prime implicants/implicates

• Computing MUSes, MCSes
• Algorithms: Deletion, QuickXplain, Progression, Dichotomic, etc. [MM20]

• Enumeration of MUSes, MCSes
• Algorithms: Marco, Camus, etc. [LS08, LPMM16]

• Solving MaxSAT, MaxSMT
• Algorithms: Core-guided, Minimum hitting sets, branch&bound, etc. [MHL+13]

• Solving quantification problems, e.g. QBF
• Algorithms: Abstraction refinement [JKMC16]
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Decision sets with boolean features

• Example ML model:
Features: x1, x2, x3 P t0, 1u (boolean)
Rules:

IF x1 ^␣x2 ^ x3 THEN predict ‘

IF x1 ^␣x3 ^ x4 THEN predict a

IF x3 ^ x4 THEN predict a

• Q: Can the model predict both ‘ and a for some instance, i.e. is there overlap?

• Yes, certainly: pick (x1, x2, x3, x4) = (1, 0, 1, 1)

• A formalization:
yp,1 Ø (x1 ^␣x2 ^ x3) ^
yn,1 Ø (x1 ^␣x3 ^ x4) ^
yn,2 Ø (x3 ^ x4) ^ (yp Ø yp,1) ^
(yn Ø (yn,1 _ yn,2))^ (yp) ^ (yn)

... and solve with SAT solver (after clausification) [Tse68, PG86]

Or use PySAT [IMM18]

6 There exists a model iff there exists a point in feature space yielding both predictions
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Decision sets with ordinal features

• Example ML model:
Features: x1, x2 P t0, 1, 2u (integer)
Rules:

IF 2x1 + x2 ą 0 THEN predict ‘

IF 2x1 ´ x2 ď 0 THEN predict a

• Q: Can the model predict both ‘ and a for some instance, i.e. is there overlap?

• Yes, of course: pick x1 = 0 and x2 = 1

• A formalization:

yp Ø (2x1 + x2 ą 0) ^ yn Ø (2x1 ´ x2 ď 0) ^ (yp) ^ (yn)

... and solve with SMT solver (many alternatives)
6 There exists a model iff there exists a point in feature space yielding both predictions
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Neural networks

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

• Each layer (except first) viewed as a block, and

• Compute x1 given input x, weights matrix A, and bias vector b
• Compute output y given x1 and activation function

• Each unit uses a ReLU activation function [NH10]
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Encoding NNs using MILP

Computation for a NN ReLU block, in two steps:

x1 = A ¨ x + b
y = max(x1, 0)

Encoding each block: [FJ18]

n
ÿ

j=1

ai,jxj + bi = yi ´ si

zi = 1Ñ yi ď 0

zi = 0Ñ si ď 0

yi ě 0, si ě 0, zi P t0, 1u

Simpler encodings exist, but not as effective [KBD+17]
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j=1

ai,jxj + bi = yi ´ si

zi = 1Ñ yi ď 0

zi = 0Ñ si ď 0

yi ě 0, si ě 0, zi P t0, 1u

Simpler encodings exist, but not as effective [KBD+17]

Modeling ML models
with logic is not only

possible but also simple !
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Example – encoding a simple NN in MILP

x0 = 1

x1

x2

ř

Sum

r1 =
řn
i=0 wixi

-0.5

+1

+1Inputs

ReLU

y1 = max(r1, 0)

r1 y1

y1 = max(x1 + x2 ´ 0.5, 0)

o1 = ITE(y1 ą 0, 1, 0)

x1 x2 r1 y1 o1
0 0 -0.5 0 0
1 0 0.5 0.5 1
0 1 0.5 0.5 1
1 1 1.5 1.5 1

MILP encoding:
x1 + x2 ´ 0.5 = y1 ´ s1
z1 = 1Ñ y1 ď 0

z1 = 0Ñ s1 ď 0

o1 = (y1 ą 0)

x1, x2, z1, o1 P t0, 1u
y1, s1 ě 0

Instance: (x, c) = ((1, 0), 1)

1 + 0´ 0.5 = 0.5´ 0

1_ 0.5 ď 0

0_ 0 ď 0

1 = (0.5 ą 0)

x1 = 1, x2 = 0, z1 = 0, o1 = 1

y1 = 0.5, s1 = 0

Checking: x = (0, 0)

0 + 0´ 0.5 = 0´ 0.5

0_ 0 ď 0

1_ 0.5 ď 0

0 = (0 ą 0)

x1 = 0, x2 = 0, z1 = 1, o1 = 0

y1 = 0, s1 = 0.5
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Basics of (non-symbolic) XAI – more detail later

• Feature attribution:
• LIME [RSG16]

• SHAP [LL17]

• ...

• Feature selection:
• Anchors [RSG18]

• ...
• Hybrid approaches:

• Saliency maps [BBM+15]

• ...
• Intrinsic interpretability: [Mol20, Rud19]

• DTs, DLs, ...
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What is intrinsic interpretability?

• Goal is to deploy interpretable ML models [Rud19, Mol20, RCC+22, Rud22]

• E.g. Decision trees, decision lists, decision sets, etc.

• The explanation is the model itself, because it is interpretable

• But: definition of interpretability is rather subjective... [Lip18]

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

• What is an explanation for ((0, 0, 1), 1)?
• Clearly, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

•

• It is the case that: IF ␣x1 ^ x3 THEN κ(x) = 1

6 t1, 3u is also sufficient for the prediction!

• t1, 3u is easier to grasp; also, it is irreducible
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Are interpretable models really interpretable? – DTs

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

• Case of optimal decision tree (DT) [HRS19]

• Explanation for (0, 0, 1, 0, 1), with prediction 1?

• Clearly, IF ␣x1 ^␣x2 ^ x3 ^␣x4 ^ x5 THEN κ(x) = 1

• But, x1, x2, x4 are irrelevant for the prediction:
x3 x5 x1 x2 x4 κ(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

6 fixing t3, 5u suffices for the prediction
Compare with t1, 2, 3, 4, 5u...
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Are interpretable models really interpretable? – DLs [MSI23]

R1 : IF (x1 ^ x3) THEN κ(x) = 1

R2 : ELSE IF (x2 ^ x4 ^ x6) THEN κ(x) = 0

R3 : ELSE IF (␣x1 ^ x3) THEN κ(x) = 1

R4 : ELSE IF (x4 ^ x6) THEN κ(x) = 0

R5 : ELSE IF (␣x1 ^␣x3) THEN κ(x) = 1

R6 : ELSE IF (x6) THEN κ(x) = 0

RDEF : ELSE κ(x) = 1

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R2 fires

• What is an explanation for the prediction?
• Fixing t3, 4, 6u suffices for the prediction

• • We need 3 (or 1) so that R1 cannot fire
• With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire

• Some questions:

• Would average human decision maker be able to understand the irreducible set t3, 4, 6u?
• Would he/she be able to compute the set t3, 4, 6u, by manual inspection?
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Part 2

Principles of Symbolic XAI – Feature Selection



Outline – Part 2

Definitions of Explanations

Duality Properties

Computational Problems



What is an explanation?

• Notation:
Original DT [PM17]

Length

Skips Thread

Reads Author

Skips Reads

Long Short

New Follow-up

Unknown Known

Rewritten DT

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

Mapping

x1 = 1 iff Length = Long
x2 = 1 iff Thread = New
x3 = 1 iff Author = Known
κ(¨) = 1 iff κ1(¨ ¨ ¨ ) = Reads
κ(¨) = 0 iff κ1(¨ ¨ ¨ ) = Skips

• What is an explanation?

• Answer to question “Why (the prediction)?” is a rule: IF <COND> THEN κ(x) = c

• Explanation: set of literals (or just features) in <COND>; irreducibility matters !

• E.g.: explanation for v = (␣x1,␣x2, x3)?

• It is the case that, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

• One possible explanation is t␣x1,␣x2, x3u or simply t1, 2, 3u
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The similarity predicate

[Mar24]

• Recall ML models for classification & regression:
• Classification: MC = (F ,F,K, κ)

• Regression: MR = (F ,F,V, ρ)

• General: M = (F ,F,T, τ)

• Similarity predicate: σ : F Ñ tJ,Ku

• Classification: σ(x) := [κ(x) = κ(v)]
• Regression: σ(x) := [|ρ(x)´ ρ(v)| ď δ] , where δ is user-specified

• Bottom line:
Reason about symbolic explainability by abstracting away type of ML model
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Abductive explanations – answering Why? questions

• Instance (v,q), i.e. c = τ(v)

• Abductive explanation (AXp, PI-explanation): [SCD18, INM19a]

• Subset-minimal set of features X Ď F sufficient for ensuring prediction

WAXp(X ) :=

@(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

• Defining AXp (from weak AXps, WAXps):

• But, WAXp is monotone; hence,

• Finding one AXp (example algorithm; many more exist): [MM20]

• Let X = F , i.e. fix all features
• Invariant: WAXp(X ) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WAXp(X ztiu) holds, then remove i from X , i.e. i becomes free
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A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)?

No

• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist
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More notation

• Notation xS = vS :
[xS = vS ] ”

ľ

iPS
(xi = vi)

• Definition of Υ(S):
Υ(S) := tx P F | xS = vSu

• Expected value, non-real-valued features:

E[τ(x) | xS = vS ] := 1/|Υ(S; v)|

ÿ

xPΥ(S;v)
τ(x)

• Expected value, real-valued features:

E[τ(x) | xS = vS ] := 1/|Υ(S; v)|

ż

Υ(S;v)
τ(x)dx
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Other definitions of WAXps/AXps

• Using probabilities, non-real-valued features: [WMHK21, IHI+22, ABOS22, IHI+23]

WAXp(S) := Pr(σ(x) | xS = vS) = 1

• Using expected values:

WAXp(S) := E[σ(x) | xS = vS ] = 1

• Definition of AXp remains unchanged
• This is true when comparing against 1
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Constrastive explanations – answering Why not? questions

• Instance (v, c), i.e. c = κ(v)

• Contrastive explanation (CXp): [Mil19, INAM20]

• Subset-minimal set of features Y Ď F sufficient for changing prediction

WCXp(Y) :=

D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Defining CXp:

• But, WCXp is also monotone; hence,

• Finding one CXp: [MM20]

• Let Y = F , i.e. free all features
• Invariant: WCXp(Y) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WCXp(Yztiu) holds, then remove i from Y , i.e. i is becomes fixed
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A simple example – CXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1

• Define Y = t1, 2, 3, 4u = F

• Can feature 1 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 2 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 3 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^ x4 ^␣κ(x1, x2, x3, x4)?

No

• CXp Y = t4u

• Obs: AXp is MHS of CXp and vice-versa...
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• Can feature 1 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣κ(x1, x2, x3, x4)? Yes
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• CXp Y = t4u

• Obs: AXp is MHS of CXp and vice-versa...

Recap weak CXp: D(x P F).
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Other definitions of WCXps/CXps

• Using probabilities, non-real-valued features:

WCXp(S) := Pr(σ(x) | xS = vS) ă 1

• Using expected values:

WCXp(S) := E[σ(x) | xS = vS ] ă 1

• Definition of CXp remains unchanged
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Detour: global explanations

[INM19b]

• AXps and CXps are defined locally (because of v) but hold globally
• I.e. can be viewed as attempt at formalizing local explanations [RSG16, LL17, RSG18]

• One can define explanations without picking a given point in feature space
• Let q P T, and refefine the similarity predicate:

• Classification: σ(x) = [κ(x) = q]
• Regression: σ(x) = [|κ(x)´ q| ď δ], δ is user-specified

• Let L = t(xi = vi) | i P F ^ vi P Vu

• Let S Ĺ L be a subset of literals that does not repeat features, i.e. S is not inconsistent
• Then, S is a global AXp if,

@(x P F).
ľ

(xi=vi)PS
(xi = vi)Ñ(σ(x))

• Counterexamples are minimal hitting sets of global AXps and vice-versa
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Outline – Part 2

Definitions of Explanations

Duality Properties

Computational Problems



Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example

• AXps:
• CXps:
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?
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Computational problems in (formal) explainability

• Compute one abductive/contrastive explanation

• Enumerate all abductive/contrastive explanations

• Decide whether feature included in all abductive/contrastive explanations

• Decide whether feature included in some abductive/contrastive explanation
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Computing one AXp/CXp

• Encode classifier into suitable logic representation T & pick suitable reasoner

• For AXp: start from S = F and drop (i.e. free) features from S while AXp condition holds
• For CXp: start from S = F and drop (i.e. fix) features from S while CXp condition holds
• Monotone predicates for WAXp & WCXp:

Paxp(S) fi ␣CO (J(ŹiPS(xi = vi))^ (␣σ(x))K) Pcxp(S) fi CO
(r(

Ź

iPFzS(xi = vi)
)
^ (␣σ(x))

z)

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds
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Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds

Exploiting MSMP, i.e.
basic algorithm used
for different problems.
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Computing AXps (resp. CXps) as MUSes (resp. MCSes)

• Recap:

WAXp(X ) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Let,

• Hard constraints, B:
B := EncodeT (␣σ(x))^iPF (siÑ(xi = vi))

• Soft constraints: S = tsi | i P Fu

• Claim: Each MUS of (B,S) is an AXp & each MCS of (B,S) is a CXp
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Part 3

Tractability in Symbolic XAI



Outline – Part 3

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Monotonic Classifiers



DT explanations

[IIM20]

middle-middle=x

top-left=x

bottom-right=x

0 bottom-left=x

top-right=x

0 1

1

bottom-left=x

top-right=x

0 1

1

1

0 1

• Run PI-explanation algorithm based on
NP-oracles

• Worst-case exponential time
• For prediction 1, it suffices to ensure all
paths with prediction 0 remain
inconsistent

• I.e. find a subset-minimal hitting set of
all 0 paths; these are the features to
keep

• E.g. BR and TR suffice for prediction

• Well-known to be solvable in
polynomial time [EG95]
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DT explanations in polynomial time
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Answering queries in DTs

• Finding one AXp in polynomial-time – covered

• Finding one CXp in polynomial-time

• Finding all CXps in polynomial-time

• Practically efficient enumeration of AXps – later
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Finding all CXps in polynomial-time

• Basic algorithm:
• L =H

• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)

• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all
MHSes
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Are interpretable models really interpretable? – DTs
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• Case of optimal decision tree (DT) [HRS19]

• Explanation for (0, 0, 1, 0, 1), with prediction 1?

• Clearly, IF ␣x1 ^␣x2 ^ x3 ^␣x4 ^ x5 THEN κ(x) = 1

• But, x1, x2, x4 are irrelevant for the prediction:
x3 x5 x1 x2 x4 κ(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

6 one AXp is t3, 5u
Compare with t1, 2, 3, 4, 5u...
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• Case of optimal decision tree (DT) [HRS19]

• Explanation for (0, 0, 1, 0, 1), with prediction 1?
• Clearly, IF ␣x1 ^␣x2 ^ x3 ^␣x4 ^ x5 THEN κ(x) = 1

• But, x1, x2, x4 are irrelevant for the prediction:
x3 x5 x1 x2 x4 κ(x)
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Are interpretable models really interpretable? – large DTs

[GZM20]

Path with 19 internal nodes.
By manual inspection, at least
10 literals are redundant!
(And at least 9 features dropped)

And the cognitive limits of human
decision makers are well-known [Mil56]

Redundancy can be arbitrary large
on path length [IIM20, HIIM21, IIM22]
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Are interpretable models really interpretable? – arbitrary redundancy [IIM20, HIIM21, IIM22]

• Classifier, with x1, . . . , xm P t0, 1u:
κ(x1, x2, . . . , xm´1, xm) =

łm

i=1
xi

• Build DT, by picking variables in order xi1, i2, . . . , imy, permutation of x1, 2, . . . ,my:

xi1

1

xi2

1

xim´1

1

xim

0

1

P t1u P t1u P t1u P t0u

P t0u P t0u P t0u P t1u

• Point: (xi1 , xi2 , . . . , xim´1
, xim) = (0, 0, . . . , 0, 1), and prediction 1

• Explanation using path in DT: ti1, i2, . . . , imu, i.e.
(xi1 = 0)^ (xi2 = 0)^ . . .^ (xim´1

= 0)^ (xim = 1)Ñκ(x1, . . . , xm)

• But timu suffices for prediction, i.e. @(x P t0, 1um).(xim)Ñκ(x)

• AXp’s can be arbitrarily smaller than paths in (optimal) DTs! [IIM20, IIM22]
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Explanation redundancy in DTs is ubiquitous – published DT examples [IIM22]

DT Ref D #N #P %R %C %m %M %avg
[Alp14, Ch. 09, Fig. 9.1] 2 5 3 33 25 50 50 50

[Alp16, Ch. 03, Fig. 3.2] 2 5 3 33 25 50 50 50

[Bra20, Ch. 01, Fig. 1.3] 4 9 5 60 25 25 50 36

[BA97, Figure 1] 3 12 7 14 8 33 33 33

[BBHK10, Ch. 08, Fig. 8.2] 3 7 4 25 12 50 50 50

[BFOS84, Ch. 01, Fig. 1.1] 3 7 4 50 25 33 33 33

[DL01, Ch. 01, Fig. 1.2a] 2 5 3 33 25 33 33 33

[DL01, Ch. 01, Fig. 1.2b] 2 5 3 33 25 33 33 33

[KMND20, Ch. 04, Fig. 4.14] 3 7 4 25 12 50 50 50

[KMND20, Sec. 4.7, Ex. 4] 2 5 3 33 25 50 50 50

[Qui93, Ch. 01, Fig. 1.3] 3 12 7 28 17 33 50 41

[RM08, Ch. 01, Fig. 1.5] 3 9 5 20 12 33 33 33

[RM08, Ch. 01, Fig. 1.4] 3 7 4 50 25 33 33 33

[WFHP17, Ch. 01, Fig. 1.2] 3 7 4 25 12 50 50 50

[VLE+16, Figure 4] 6 39 20 65 63 20 40 33

[Fla12, Ch. 02, Fig. 2.1(right)] 2 5 3 33 25 50 50 50

[Kot13, Figure 1] 3 10 6 33 11 33 33 33

[Mor82, Figure 1] 3 9 5 80 75 33 50 41

[PM17, Ch. 07, Fig. 7.4] 3 7 4 50 25 33 33 33

[RN10, Ch. 18, Fig. 18.6] 4 12 8 25 6 25 33 29

[SB14, Ch. 18, Page 212] 2 5 3 33 25 50 50 50

[Zho12, Ch. 01, Fig. 1.3] 2 5 3 33 25 33 33 33

[BHO09, Figure 1b] 4 13 7 71 50 33 50 36

[Zho21, Ch. 04, Fig. 4.3] 4 14 9 11 2 25 25 25
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Many DTs have paths that are not minimal XPs – Russell&Norvig’s book

[RN10]

Patrons

No Hungry

No Type

Yes No Fri/Sat

No Yes

Yes

Yes

None Full

No Yes

French

Italian

Thai

No Yes

Burger

Some

• Explanation for (P,H, T,W) = (Full, Yes, Thai,No)?
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Many DTs have paths that are not minimal XPs – Zhou’s book

[Zho12]is y ą 0.73?

cross is x ą 0.64?

cross circle

Y N

Y N

• Explanation for (x, y) = (1.25,´1.13)?

Obs: True explanations can be computed for categorical, integer or real-valued features !

59 / 144



Many DTs have paths that are not minimal XPs – Alpaydin’s book

[Alp14]x1 ą w10?

x2 ą w20?

l l

l

Y

N Y

N

• Explanation for (x1, x2) = (α, β), with α ą w10 and β ď w20?

Obs: True explanations can be computed for categorical, integer or real-valued features !
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Many DTs have paths that are not minimal XPs – S.-S.&B.-D.’s book

[SB14]

Color

Not Tasty Softness

Not Tasty Tasty

Other Pale Grade

Other Gives2Pressume

• Explanation for (color, softness) = (Pale Grade,Other)?
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Many DTs have paths that are not minimal XPs – Poole&Mackworth’s book

[PM17]

Length

Skips Thread

Reads Author

Skips Reads

Long Short

New Follow-up

Unknown Known

• Explanation for (L, T,A) = (Short, Follow-Up,Unknown)?
• Explanation for (L, T,A) = (Short, Follow-Up, Known)?
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Explanation redundancy in DTs is ubiquitous – DTs from datasets [IIM20, HIIM21, IIM22]

Dataset (#F #S) IAI ITI

D #N %A #P %R %C %m %M %avg D #N %A #P %R %C %m %M %avg
adult ( 12 6061) 6 83 78 42 33 25 20 40 25 17 509 73 255 75 91 10 66 22

anneal ( 38 886) 6 29 99 15 26 16 16 33 21 9 31 100 16 25 4 12 20 16

backache ( 32 180) 4 17 72 9 33 39 25 33 30 3 9 91 5 80 87 50 66 54

bank ( 19 36293) 6 113 88 57 5 12 16 20 18 19 1467 86 734 69 64 7 63 27

biodegradation ( 41 1052) 5 19 65 10 30 1 25 50 33 8 71 76 36 50 8 14 40 21

cancer ( 9 449) 6 37 87 19 36 9 20 25 21 5 21 84 11 54 10 25 50 37

car ( 6 1728) 6 43 96 22 86 89 20 80 45 11 57 98 29 65 41 16 50 30

colic ( 22 357) 6 55 81 28 46 6 16 33 20 4 17 80 9 33 27 25 25 25

compas ( 11 1155) 6 77 34 39 17 8 16 20 17 15 183 37 92 66 43 12 60 27

contraceptive ( 9 1425) 6 99 49 50 8 2 20 60 37 17 385 48 193 27 32 12 66 21

dermatology ( 34 366) 6 33 90 17 23 3 16 33 21 7 17 95 9 22 0 14 20 17

divorce ( 54 150) 5 15 90 8 50 19 20 33 24 2 5 96 3 33 16 50 50 50

german ( 21 1000) 6 25 61 13 38 10 20 40 29 10 99 72 50 46 13 12 40 22

heart-c ( 13 302) 6 43 65 22 36 18 20 33 22 4 15 75 8 87 81 25 50 34

heart-h ( 13 293) 6 37 59 19 31 4 20 40 24 8 25 77 13 61 60 20 50 32

kr-vs-kp ( 36 3196) 6 49 96 25 80 75 16 60 33 13 67 99 34 79 43 7 70 35

lending ( 9 5082) 6 45 73 23 73 80 16 50 25 14 507 65 254 69 80 12 75 25

letter ( 16 18668) 6 127 58 64 1 0 20 20 20 46 4857 68 2429 6 7 6 25 9

lymphography ( 18 148) 6 61 76 31 35 25 16 33 21 6 21 86 11 9 0 16 16 16

mortality (118 13442) 6 111 74 56 8 14 16 20 17 26 865 76 433 61 61 7 54 19

mushroom ( 22 8124) 6 39 100 20 80 44 16 33 24 5 23 100 12 50 31 20 40 25

pendigits ( 16 10992) 6 121 88 61 0 0 — — — 38 937 85 469 25 86 6 25 11

promoters ( 58 106) 1 3 90 2 0 0 — — — 3 9 81 5 20 14 33 33 33

recidivism ( 15 3998) 6 105 61 53 28 22 16 33 18 15 611 51 306 53 38 9 44 16

seismic_bumps ( 18 2578) 6 37 89 19 42 19 20 33 24 8 39 93 20 60 79 20 60 42

shuttle ( 9 58000) 6 63 99 32 28 7 20 33 23 23 159 99 80 33 9 14 50 30

soybean ( 35 623) 6 63 88 32 9 5 25 25 25 16 71 89 36 22 1 9 12 10

spambase ( 57 4210) 6 63 75 32 37 12 16 33 19 15 143 91 72 76 98 7 58 25

spect ( 22 228) 6 45 82 23 60 51 20 50 35 6 15 86 8 87 98 50 83 65

splice ( 2 3178) 3 7 50 4 0 0 — — — 88 177 55 89 0 0 — — —
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Are interpretable models really interpretable? – DLs [MSI23]

R1 : IF (x1 ^ x3) THEN κ(x) = 1

R2 : ELSE IF (x2 ^ x4 ^ x6) THEN κ(x) = 0

R3 : ELSE IF (␣x1 ^ x3) THEN κ(x) = 1

R4 : ELSE IF (x4 ^ x6) THEN κ(x) = 0

R5 : ELSE IF (␣x1 ^␣x3) THEN κ(x) = 1

R6 : ELSE IF (x6) THEN κ(x) = 0

RDEF : ELSE κ(x) = 1

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R2 fires

• What is the abductive explanation?
• Recall: one AXp is t3, 4, 6u

• • We need 3 (or 1) so that R1 cannot fire
• With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire

• Some questions:

• Would average human decision maker be able to understand the AXp?
• Would he/she be able to compute one AXp, by manual inspection?
(BTW, we have proved that computing one AXp for DLs is computationally hard...) [IM21, MSI23]
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Are interpretable models really interpretable? – DTs/DLs in practice [MSI23]
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Outline – Part 3

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Monotonic Classifiers



From DTs to explained DSs

[HM23a]

• Decision sets raise a number of issues:
• Overlap: Two rules with different predictions can fire on the same input
• Incomplete coverage: For some inputs, no rule may fire

• A default rule defeats the purpose of unordered rules

• A DS without overlap and complete coverage computes a classification function

• And explaining DSs is computationally hard...

• One can extract explained DSs from DTs

• Extract one AXp (viewed as a logic rule) from each path in DT
• Resulting rules are non-overlapping, and cover feature space
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Example

A

P

Y N

P

N

V

Z

N S

G

N Y

H

N C

Y G

Y N

Y

Y

Y

Y

=0

=1 =0

=1

=0

=0

=1

=1
=2

=1

=0 =1

=0

=1 =0

=1 =0

=1 =0

=0

=0

=1

=1

1

2

4 5

3

6

8

10

12 13

15

17 18

16

19 20

21 22

23 24

14

11

9

7

64 / 144



Example

A

P

Y N

P

N

V

Z

N S

G

N Y

H

N C

Y G

Y N

Y

Y

Y

Y

=0

=1 =0

=1

=0

=0

=1

=1
=2

=1

=0 =1

=0

=1 =0

=1 =0

=1 =0

=0

=0

=1

=1

1

2

4 5

3

6

8

10

12 13

15

17 18

16

19 20

21 22

23 24

14

11

9

7

R01: IF [P] THEN κ(¨) = Y
R02: IF [A^ P]THEN κ(¨) = N
R03: IF [P^ N^ V^ Z = 1] THEN κ(¨) = N
R04: IF [P^ N^ V^ Z = 2^ S^ G] THEN κ(¨) = N
R05: IF [A^ Z = 2^ S^ G] THEN κ(¨) = Y
R06: IF [P^ N^ V^ Z = 2^ S^ H] THEN κ(¨) = N
R07: IF [A^ Z = 2^ S^ H^ C] THEN κ(¨) = Y
R08: IF [A^ Z = 2^ H^ G] THEN κ(¨) = Y
R09: IF [P^ N^ V^ Z = 2^ C^ G] THEN κ(¨) = N
R10: IF [A^ Z = 0] THEN κ(¨) = Y
R11: IF [A^ V] THEN κ(¨) = Y
R12: IF [A^ N] THEN κ(¨) = Y
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Outline – Part 3

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Monotonic Classifiers



Example monotonic classifier – (v, c) = ((10, 10, 5, 0),A)

[MGC+21]

Variable Meaning Range

κ(¨) fi M Student grade P tA,B, C,D, E, Fu

S Final score P t0, . . . , 10u

Feat. id Feat. var. Feat. name Domain

1 Q Quiz t0, . . . , 10u

2 X Exam t0, . . . , 10u

3 H Homework t0, . . . , 10u

4 R Project t0, . . . , 10u

M = ITE(S ě 9,A, ITE(S ě 7,B, ITE(S ě 5, C, ITE(S ě 4,D, ite(S ě 2, E, F)))))
S = max [0.3ˆ Q+ 0.6ˆ X+ 0.1ˆ H,R]
Also, F ď E ď D ď C ď B ď A
And, κ(x1) ď κ(x2) if x1 ď x2
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Explaining monotonic classifiers

• Instance (v, c)
• Domain for i P F : λ(i) ď xi ď µ(i)
• Idea: refine lower and upper bounds on the prediction

• vL and vU
• Utilities:

• FixAttr(i):
vL Ð (vL1 , . . . , vi, . . . , vLN)
vU Ð (vU1 , . . . , vi, . . . , vUN)
(A,B)Ð (Aztiu,B Y tiu)
return (vL, vU,A,B)

• FreeAttr(i):
vL Ð (vL1 , . . . , λ(i), . . . , vLN)
vU Ð (vU1 , . . . , µ(i), . . . , vUN)
(A,B)Ð (Aztiu,B Y tiu)
return (vL, vU,A,B)
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Computing one AXp

1: vL Ð (v1, . . . , vN)
2: vU Ð (v1, . . . , vN) Ź Ensures: κ(vL) = κ(vU)
3: (C,D,P)Ð (F ,H,H) Ź S : Some possible seed
4: for all i P S do
5: (vL, vU, C,D)Ð FreeAttr(i, v, vL, vU, C,D) Ź Require: κ(vL) = κ(vU), given S
6: for all i P FzS do Ź Loop inv.: κ(vL) = κ(vU)
7: (vL, vU, C,D)Ð FreeAttr(i, v, vL, vU, C,D)

8: if κ(vL) ­= κ(vU) then Ź If invariant broken, fix it
9: (vL, vU,D,P)Ð FixAttr(i, v, vL, vU,D,P)

10: return P
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Computing one AXp – example

• λ(i) = 0 and µ(i) = 10

• v = (10, 10, 5, 0), with κ(v) = A
• Q: find one AXp (CXp is similar)

Feat. Initial values Changed values Predictions Dec. Resulting values
vL vU vL vU κ(vL) κ(vU) vL vU

1 (10,10,5,0) (10,10,5,0) (0,10,5,0) (10,10,5,0) C A ! (10,10,5,0) (10,10,5,0)

2 (10,10,5,0) (10,10,5,0) (10,0,5,0) (10,10,5,0) E A ! (10,10,5,0) (10,10,5,0)

3 (10,10,5,0) (10,10,5,0) (10,10,0,0) (10,10,10,0) A A % (10,10,0,0) (10,10,10,0)

4 (10,10,0,0) (10,10,10,0) (10,10,0,0) (10,10,10,10) A A % (10,10,0,0) (10,10,10,10)
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Part 4

(Efficient) Intractability in Symbolic XAI



Outline – Part 4

Explaining Decision Lists

Myth #02: Model-Agnostic Explainability

Progress Report on Symbolic XAI



An encoding for DLs – components

R1: IF (τ1) THEN d1
R2: ELSE IF (τ2) THEN d2

¨ ¨ ¨

Rj: ELSE IF (τj) THEN dj
¨ ¨ ¨

Rn: ELSE IF (τn) THEN dn
RDEF: ELSE THEN dn+1

• Clauses for encoding ϕ: Eϕ(z1, . . .), such that z1 = 1 iff ϕ = 1

• For τj: Eτj(tj, . . .)
• For xi = vi: Exi=vi(li, . . .)
• Let ej = 1 iff dj matches c

• Prediction change with rule up to Rj (with dj ­= c), if τj* K and τk( K, for 1 ď k ă j, with
ek = 1: [

fj Ø
(
tj ^

ľ

1ďkăj,ek=1
␣tk

)]
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• Clauses for encoding ϕ: Eϕ(z1, . . .), such that z1 = 1 iff ϕ = 1

• For τj: Eτj(tj, . . .)
• For xi = vi: Exi=vi(li, . . .)
• Let ej = 1 iff dj matches c

• Require that at least one fj, with ej = 0 and 1 ď j ď n, to be consistent (i.e. some rule up to
j with prediction other than c to fire):(

ł

1ďjďn,ej=0
fj
)
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An encoding for DLs – components

R1: IF (τ1) THEN d1
R2: ELSE IF (τ2) THEN d2

¨ ¨ ¨

Rj: ELSE IF (τj) THEN dj
¨ ¨ ¨

Rn: ELSE IF (τn) THEN dn
RDEF: ELSE THEN dn+1

• The set of soft clauses is given by: S fi t(li), i = 1, . . . ,mu
• The set of hard clauses is given by:

B fi
ľ

1ďiďm
Exi=vi(li, . . .)^

ľ

1ďjďn
Eτj(tj, . . .)^

ľ

1ďjďn,ej=0

(
fj Ø

(
tj ^

ľ

1ďkăj,ek=1
␣tk

))
^

(
ł

1ďjďn,ej=0
fj
)

• B Y S ( K
• MUSes are AXp’s & MCSes are CXp’s
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Outline – Part 4

Explaining Decision Lists

Myth #02: Model-Agnostic Explainability

Progress Report on Symbolic XAI



What is model-agnostic explainability?

• Wildly popular XAI approach [RSG16, LL17, RSG18]

• Feature attribution: LIME, SHAP, ... [RSG16, LL17]

• Feature selection: Anchors, ... [RSG18]

• Q: Are model-agnostic explanations rigorous?
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Easy to spot problems – BT for zoo dataset

& Anchor

[INM19c, Ign20]

amphibian

tail?

-0.0547288768

0.007924526

yes

no

bird

feathers?

0.285283029

-0.0547288768

yes

no

bug

6 legs?

0.184210524

-0.0552432425

yes

no

fish

fins?

0.19463414

-0.0549824126

yes

no

invertebrate

backbone?

-0.0550289042

0.108808279

yes

no

mammal

milk?

0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no
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yes

no

• Example instance:

(& Anchor picks): [RSG18]

IF (animal_name = pitviper)^␣hair^␣feathers^ eggs^␣milk^
␣airborne^␣aquatic^ predator^␣toothed^ backbone^ breathes^
venomous^␣fins^ (legs = 0)^ tail^␣domestic^␣catsize

THEN (class = reptile)
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• Explanation obtained with Anchor: [RSG18]

IF ␣hair^␣milk^␣toothed^␣fins
THEN (class = reptile)
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0.028965516

-0.0444687866

yes
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• But, explanation incorrectly “explains” another instance (from training data!)

IF (animal_name = toad)^␣hair^␣feathers^ eggs^␣milk^
␣airborne^␣aquatic^␣predator^␣toothed^ backbone^ breathes^
␣venomous^␣fins^ (legs = 4)^␣tail^␣domestic^␣catsize

THEN (class = amphibian)

72 / 144



Model-agnostic explainers cannot be trusted [INM19c]

Incorrect explanations:
Classifier for deciding bank loans

Two samples: Bessie– (v1, Y) and Clive– (v2,N)
Explanation X: age=45, salary= 50K
And,
X is consistent with Bessie– (v1, Y)
X is consistent with Clive– (v2,N)

6 different outcomes & same explanation !?
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How to validate model-agnostic explanations

• For feature selection, checking rigor is easy

• Let X be the features reported by model-agnostic tool

• Check whether X is a (rigorous) (W)AXp:
1. X is sufficient for prediction:

@(x P F).
ľ

jPX
(xj = vj)Ñ(κ(x) = c)

2. And, X is subset-minimal:

@(t P X ).D(x P F).
ľ

jP(X zttu)
(xj = vj)Ñ(κ(x) ­= c)

Depending on logic encoding used for classifier, different automated reasoners can be
employed

• Approach is bounded by scalability of rigorous explanations...

74 / 144



How to validate model-agnostic explanations

• For feature selection, checking rigor is easy

• Let X be the features reported by model-agnostic tool

• Check whether X is a (rigorous) (W)AXp:
1. X is sufficient for prediction:

@(x P F).
ľ

jPX
(xj = vj)Ñ(κ(x) = c)

2. And, X is subset-minimal:

@(t P X ).D(x P F).
ľ

jP(X zttu)
(xj = vj)Ñ(κ(x) ­= c)

Depending on logic encoding used for classifier, different automated reasoners can be
employed

• Approach is bounded by scalability of rigorous explanations...

74 / 144



How to validate model-agnostic explanations

• For feature selection, checking rigor is easy

• Let X be the features reported by model-agnostic tool

• Check whether X is a (rigorous) (W)AXp:
1. X is sufficient for prediction:

@(x P F).
ľ

jPX
(xj = vj)Ñ(κ(x) = c)

2. And, X is subset-minimal:

@(t P X ).D(x P F).
ľ

jP(X zttu)
(xj = vj)Ñ(κ(x) ­= c)

Depending on logic encoding used for classifier, different automated reasoners can be
employed

• Approach is bounded by scalability of rigorous explanations...

74 / 144



How to validate model-agnostic explanations

• For feature selection, checking rigor is easy

• Let X be the features reported by model-agnostic tool

• Check whether X is a (rigorous) (W)AXp:
1. X is sufficient for prediction:

@(x P F).
ľ

jPX
(xj = vj)Ñ(κ(x) = c)

2. And, X is subset-minimal:

@(t P X ).D(x P F).
ľ

jP(X zttu)
(xj = vj)Ñ(κ(x) ­= c)

Depending on logic encoding used for classifier, different automated reasoners can be
employed

• Approach is bounded by scalability of rigorous explanations...
74 / 144



How serious is the lack of rigor of model-agnostic explanations?

• Obs: Lack of rigor of model-agnostic explanations known since 2019 [INM19c, Ign20, YIS+23]

• Results for boosted trees, due to non-scalability with NNs [CG16]

• Some results for Anchors [RSG18]

Dataset % Incorrect % Redundant % Correct
adult 80.5% 1.6% 17.9%
lending 3.0% 0.0% 97.0%
rcdv 99.4% 0.4% 0.2%

compas 84.4% 1.7% 13.9%
german 99.7% 0.2% 0.1%

• Obs: Results are not positive even if we count how often prediction changes [NSM+19]

• In this case, BNNs were used, to allow for model counting...

• For feature attribution we proposed different ways of assessing rigor [INM19c, NSM+19, Ign20, YIS+23]
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Incorrect explanations are ubiquitous & likely... [NSM+19]
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Efficacy map – progress until 2022 [MI22, Mar22, MS23]

[INM19c, Ign20, IIM20, MGC+20, MGC+21, HIIM21, IMS21, IM21, CM21, HII+22, IISMS22]

NBCs

Monotonic

d-DNNF

GDFs

DTs
XpGs

DLs

RFs
BTs

NNs

BNs

Practical scalability (effectiveness)
Effective Ineffective

Co
m
pu
ta
tio
na
lc
om

pl
ex
ity

Co
m
pu
ta
tio
na
lly
ha
rd

Po
ly
-t
im
e

Computing one XP • Formal explanations efficient for several
families of classifiers

• Polynomial-time:
• Naive-Bayes classifiers (NBCs) [MGC+20]

• Decision trees (DTs) [IIM20, HIIM21]

• XpG’s: DTs, OBDDs, OMDDs, etc. [HIIM21]

• Monotonic classifiers [MGC+21]

• Propositional languages (e.g. d-DNNF, ...) [HII+22]

• Additional results [CM21, HII+22]

• Comp. hard, but effective (efficient in practice):
• Random forests (RFs) [IMS21]

• Decision lists (DLs) [IM21]

• Boosted trees (BTs) [INM19c, Ign20, IISMS22]

• Comp. hard, and ineffective (hard in practice):
• Neural networks (NNs) [INM19a]

• Bayesian networks (BNs) [SCD18]
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Efficacy map – recent progress [HM23b]

[INM19c, Ign20, IIM20, MGC+20, MGC+21, HIIM21, IMS21, IM21, CM21, HII+22, IISMS22]
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Computing one XP • Formal explanations efficient for several
families of classifiers

• Polynomial-time:
• Naive-Bayes classifiers (NBCs) [MGC+20]

• Decision trees (DTs) [IIM20, HIIM21]

• XpG’s: DTs, OBDDs, OMDDs, etc. [HIIM21]

• Monotonic classifiers [MGC+21]

• Propositional languages (e.g. d-DNNF, ...) [HII+22]

• Additional results [CM21, HII+22]

• Comp. hard, but effective (efficient in practice):
• Random forests (RFs) [IMS21]

• Decision lists (DLs) [IM21]

• Boosted trees (BTs) [INM19c, Ign20, IISMS22]

• Comp. hard, but some practical scalability:
• Neural networks (NNs) [HM23b]

• Comp. hard, and ineffective (hard in practice):
• Bayesian networks (BNs) [SCD18]
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Results for RFs in 2021 (with SAT) [IMS21]

Dataset (#F #C #I) RF CNF SAT oracle AXp (RFxpl) Anchor

D #N %A #var #cl MxS MxU #S #U Mx m avg %w avg %w
ann-thyroid ( 21 3 718)4 2192 98 17854 29230 0.12 0.15 2 18 0.36 0.05 0.13 96 0.32 4

appendicitis ( 7 2 43) 6 1920 90 5181 10085 0.02 0.02 4 3 0.05 0.01 0.03 100 0.48 0

banknote ( 4 2 138)5 2772 97 8068 16776 0.01 0.01 2 2 0.03 0.02 0.02 100 0.19 0

biodegradation ( 41 2 106)5 4420 88 11007 23842 0.31 1.05 17 22 2.27 0.04 0.29 97 4.07 3

heart-c ( 13 2 61) 5 3910 85 5594 11963 0.04 0.02 6 7 0.07 0.01 0.04 100 0.85 0

ionosphere ( 34 2 71) 5 2096 87 7174 14406 0.02 0.02 22 11 0.11 0.02 0.03 100 12.43 0

karhunen ( 64 10 200)5 6198 91 36708 70224 1.06 1.41 35 29 14.64 0.65 2.78 100 28.15 0

letter ( 16 26 398)8 44304 82 28991 68148 1.97 3.31 8 8 6.91 0.24 1.61 70 2.48 30

magic ( 10 2 381)6 9840 84 29530 66776 0.51 1.84 6 4 2.13 0.07 0.14 99 0.91 1

new-thyroid ( 5 3 43) 5 1766 100 17443 28134 0.03 0.01 3 2 0.08 0.03 0.05 100 0.36 0

pendigits ( 16 10 220)6 12004 95 30522 59922 2.40 1.32 10 6 4.11 0.14 0.94 96 3.68 4

ring ( 20 2 740)6 6188 89 19114 42362 0.27 0.44 11 9 1.25 0.05 0.25 92 7.25 8

segmentation ( 19 7 42) 4 1966 90 21288 35381 0.11 0.17 8 10 0.53 0.11 0.31 100 4.13 0

shuttle ( 9 7 1160)3 1460 99 18669 29478 0.11 0.08 2 7 0.34 0.05 0.14 99 0.42 1

sonar ( 60 2 42) 5 2614 88 9938 20537 0.04 0.06 36 24 0.43 0.04 0.09 100 23.02 0

spectf ( 44 2 54) 5 2306 88 6707 13449 0.07 0.06 20 24 0.34 0.02 0.07 100 8.12 0

texture ( 40 11 550)5 5724 87 34293 64187 0.79 0.63 23 17 3.24 0.19 0.93 100 28.13 0

twonorm ( 20 2 740)5 6266 94 21198 46901 0.08 0.08 12 8 0.28 0.06 0.10 100 5.73 0

vowel ( 13 11 198)6 10176 90 44523 88696 1.66 2.11 8 5 4.52 0.15 1.15 66 1.67 34

waveform-40 ( 40 3 500)5 6232 83 30438 58380 0.50 0.86 15 25 7.07 0.11 0.88 100 11.93 0

wpbc ( 33 2 78) 5 2432 76 9078 18675 1.00 1.53 20 13 5.33 0.03 0.65 79 3.91 21

79 / 144



Results for NNs in 2019 (with SMT/MILP) [INM19a]

Dataset Minimal explanation Minimum explanation

size SMT (s) MILP (s) size SMT (s) MILP (s)

australian (14)
m 1 0.03 0.05 — — —
a 8.79 1.38 0.33 — — —
M 14 17.00 1.43 — — —

backache (32)
m 13 0.13 0.14 — — —
a 19.28 5.08 0.85 — — —
M 26 22.21 2.75 — — —

breast-cancer (9)
m 3 0.02 0.04 3 0.02 0.03
a 5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81

cleve (13)
m 4 0.05 0.07 4 — 0.07
a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06

hepatitis (19)
m 6 0.02 0.04 4 0.01 0.04
a 11.42 0.07 0.06 9.39 4.07 2.89
M 19 0.26 0.20 19 27.05 22.23

voting (16)
m 3 0.01 0.02 3 0.01 0.02
a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77

spect (22)
m 3 0.02 0.02 3 0.02 0.04
a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73
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First rigorous approach
for explaining NNs !

Scales to (a few)
tens of neurons...
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Recent results for NNs (using Marabou [KHI+19]) [HM23b]

DNN points |AXp| #Calls Time #TO |AXp| #Calls Time #TO

ϵ = 0.1 ϵ = 0.05

ACASXU_1_5
#1 3 5 185.9 0 2 5 113.8 0
#2 2 5 273.8 0 1 5 33.2 0
#3 0 5 714.2 0 0 5 4.3 0

ACASXU_3_1
#1 0 5 2219.3 0 0 5 14.2 0
#2 2 5 4263.5 1 0 5 1853.1 0
#3 1 5 581.8 0 0 5 355.9 0

ACASXU_3_2
#1 3 5 13739.3 2 1 5 6890.1 1
#2 3 5 226.4 0 2 5 125.1 0
#3 2 5 1740.6 0 2 5 173.6 0

ACASXU_3_5
#1 4 5 43.6 0 2 5 59.4 0
#2 3 5 5039.4 0 2 5 4303.8 1
#3 2 5 5574.9 1 2 5 2660.3 0

ACASXU_3_6
#1 1 5 6225.0 1 0 5 51.0 0
#2 3 5 4957.2 1 2 5 1897.3 0
#3 1 5 196.1 0 1 5 919.2 0

ACASXU_3_7
#1 3 5 6256.2 0 4 5 26.9 0
#2 4 5 311.3 0 1 5 6958.6 1
#3 2 5 7756.5 1 1 5 7807.6 1

ACASXU_4_1
#1 2 5 12413.0 2 1 5 5090.5 1
#2 1 5 5035.1 1 0 5 2335.6 0
#3 4 5 1237.3 0 4 5 1143.4 0

ACASXU_4_2
#1 4 5 15.9 0 4 5 12.1 0
#2 3 5 1507.6 0 1 5 111.3 0
#3 2 5 5641.6 2 0 5 1639.1 0

Scales to a few
hundred neurons
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Questions?
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Recap last lecture

• Symbolic XAI by feature selection:

• (W)AXps/(W)CXps & duality
• Quantifier-based, probability-based, expected value-based

• Tractability of XPs: DTs, monotonic, etc.
• For DTs: all CXps in polynomial-time

• Intractability of XPs: DLs, RFs/BTs/TEs, NNs

• And myths of non-symbolic XAI:
• Intrinsic interpretability
• Model-agnostic explainability
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(W)AXps/(W)CXps

WAXp(X ) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds
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Warm-up exercise – one AXp for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• AXp:
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• AXp: t1, 2, 3u
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Another warm-up exercise – one AXp for example DL

• DL:
R1 : IF (x1 ^ x3) THEN κ(x) = 0

R2 : ELSE IF (x1 ^ x5) THEN κ(x) = 0

R3 : ELSE IF (x2 ^ x4) THEN κ(x) = 1

R4 : ELSE IF (x1 ^ x7) THEN κ(x) = 0

R5 : ELSE IF (␣x4 _ x6) THEN κ(x) = 1

R6 : ELSE IF (␣x4 _␣x6) THEN κ(x) = 1

R7 : ELSE IF (␣x2 _ x6) THEN κ(x) = 1

RDEF : ELSE κ(x) = 0

• Instance: v = (0, 1, 0, 1, 0, 1, 0)

• The prediction is 1, due to R3

• AXp:

• Quiz: write down the constraints and confirm AXp with SAT solver
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Plan for this short course

• 1st day:
• Part #0a: Motivation
• Part #1: Foundations
• Part #2: Principles of symbolic XAI – feature selection (& myth of interpretability)
• Part #3: Tractable symbolic XAI
• Part #4: Intractable symbolic XAI (& myth of model-agnostic XAI)

• Q&A

• 2nd day:
• Part #0b: Recapitulate
• Part #5: Explainability queries
• Part #6: Advanced topics
• Part #7: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• Part #8: Conclusions & research directions

• Q&A
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Part 5

Queries in Symbolic XAI



Outline – Part 5

Enumeration of Explanations

Feature Necessity & Relevancy



How to navigate the space of XPs?

• Goal: iteratively list yet unlisted XPs (either AXp’s or CXp’s)

• Complexity results:
• For NBCs: enumeration with polynomial delay [MGC+20]

• For monotonic classifiers: enumeration is computationally hard [MGC+21]

• Recall: for DTs, enumeration of CXp’s is in P [HIIM21, IIM22]

• There are algorithms for direct enumeration of CXp’s
• Akin to enumerating MCSes

• No known algorithms for direct enumeration of AXp’s [MM20]

• Akin to enumerating MUSes
• Enumeration of MCSes + dualization often not realistic [LS08, FK96]

• There can be too many CXp’s...
• Best solution is a MARCO-like algorithm (for enumerating MUSes) [LPMM16]

• On-demand enumeration of AXp’s/CXp’s
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Generic oracle-based algorithm

Input: Parameters Paxp , Pcxp , T , F , κ, v

1: HÐH Ź H defined on set U = tu1, . . . , umu
2: repeat
3: (outc, u)Ð SAT(H)

4: if outc = true then
5: S Ð ti P F | ui = 0u Ź S : fixed features
6: U Ð ti P F | ui = 1u Ź U : universal features; F = S Y U
7: if Pcxp(U ; T ,F , κ, v) then Ź U = FzS Ě some CXp
8: P Ð oneXP(U ;Pcxp, T ,F , κ, v)
9: reportCXp(P)

10: HÐ HY t(_iPP␣ui)u
11: else Ź S Ě some AXp
12: P Ð oneXP(S;Paxp, T ,F , κ, v)
13: reportAXp(P)

14: HÐ HY t(_iPPui)u
15: until outc = false
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Recall oneXP

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds
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DT classifier – example run of enumerator

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

• Instance: (v, c) = ((0, 0, 1, 0, 1), 1)

x3 x5 x1 x2 x4 κ2(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

x3 x5 x1 x2 x4 κ2(x)
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 1

Iter. u S Pcxp(¨) AXp CXp Clause

1 (1, 1, 1, 1, 1) H 1 – t3u (␣u3)

2 (1, 1, 0, 1, 1) t3u 1 – t5u (␣u5)

3 (1, 1, 0, 1, 0) t3, 5u 0 t3, 5u – (u3 _ u5)

5 [outc = false] – – – – –
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DT classifier – another example run of enumerator

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u
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P t1u
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P t0u P t1u

P t1u

P t1u
1

2
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7

10

14 15

11

5

8

12 13

9

3

• Instance: (v, c) = ((0, 0, 1, 0, 1), 1)

x3 x5 x1 x2 x4 κ2(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

x3 x5 x1 x2 x4 κ2(x)
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 1

Iter. u S Pcxp(¨) AXp CXp Clause

1 (0, 0, 0, 0, 0) t1, 2, 3, 4, 5u 0 t3, 5u – (u3 _ u5)

2 (0, 0, 1, 0, 0) t1, 2, 4, 5u 1 – t3u (␣u3)

3 (0, 0, 1, 0, 1) t1, 2, 4u 1 – t5u (␣u5)

5 [outc = false] – – – – –
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DTs admit more efficient algorithms

• Recall:
• Given instance (v, c), create set I
• For each path Pk with prediction d ­= c:

• Let Ik denote the features with literals inconsistent with v
• Add Ik to I

• Remove from I the sets that have a proper subset in I ,
and duplicates

• I is the set of CXp’s – algorithm runs in poly-time

• For AXp’s: run std dualization algorithm [FK96]

• Obs: starting hypergraph is poly-size!
• And each MHS is an AXp

• Example:
• I1 = t3u

• I2 = t5u

• I3 = t2, 5u

• 6 keep I1 an I2
• AXp’s: MHSes yield tt3, 5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u
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P t0u
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P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3
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Outline – Part 5

Enumeration of Explanations

Feature Necessity & Relevancy



Feature necessity

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X )u

C := tX Ď F | CXp(X )u

A: encodes the set of all irreducible rules for prediction c given v

• Features common to all AXps in A and all CXps in C:

NA :=
Ş

XPA X

NC :=
Ş

XPC X

• NA and NC need not be equal
• A = tt1u, t2, 3uu

• A feature i is necessary for abductive explanations if i P NA

• A feature i is necessary for contrastive explanations if i P NC
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Feature relevancy

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X )u

C := tX Ď F | CXp(X )u

• Features occurring in some A and in some C:

FA :=
Ť

XPA X

FC :=
Ť

XPC X

• Claim: FA = FC
• I.e. a feature exists in some AXp iff it exists in some CXp

• A feature i P F is relevant if i P FA (and so, if i P FC)
• A feature is relevant if it is included in some AXp (or CXp)

• A feature i P F is irrelevant if i R FA (and so, if i R FC)
• A feature is irrelevant if it is not included in any AXp (or CXp)
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An example

• Consider the classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• (v, c) = ((0, 0, 0, 1), 1)

• A = tt4uu = C
• Why?

• If 4 fixed, then prediction must be 1
• If 4 is allowed to change, then prediction changes
• Values of 1, 2, 3 not used to fix/change the prediction

• Feature 4 is relevant, since it is included in one (and the only) AXp/CXp

• Features 1, 2, 3 are irrelevant, since there are not included in any AXp/CXp

• Obs: irrelevant features are absolutely unimportant !
We could propose some other explanation by adding features 1, 2 or 3 to AXp t4u, but
prediction would remain unchanged for any value assigned to those features

• And we aim for irreducibility (Occam’s razor is a mainstay of AI/ML)
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Abstraction refinement for feature relevancy

• Claim: X Ď F and t P X . If WAXp(X ) holds and WAXp(X zttu) does not hold, then
any AXp Z Ď X Ď F must contain feature t.

• Proof:

• Let Z Ď X Ď F be an AXp such that t R Z .
• Then Z Ď X zttu.
• But then, by monotonicity, WAXp(X zttu) must hold (i.e. any superset of X is a weak AXp); a
contradiction.

• Approach:

• Guess weak AXp candidates: t P X ^WAXp(X )

• Check weak AXp candidates: ␣WAXp(X zttu)
• Block counterexamples
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A general abstraction refinement algorithm

Input: Instance v, Target Feature t; Feature Set F , Classifier κ
1: function FRPCGR(v, t;F , κ)
2: HÐH Ź H overapproximates the subsets of F that do not contain an AXp containing t
3: repeat
4: (outc, s)Ð SAT(H, st) Ź Use SAT oracle to pick candidate wAXp containing t
5: if outc = true then
6: P Ð ti P F | si = 1u Ź Set P is the candidate wAXp, and t P P
7: D Ð ti P F | si = 0u Ź Set D contains the features not included in P
8: if ␣WAXp(P) then Ź Is P not a wAXp?
9: HÐ HY newPosCl(D; t, κ) Ź Picked set is not a wAXp; block set
10: else Ź Picked set is a wAXp
11: if ␣WAXp(Pzttu) then Ź P without t not a wAXp?
12: reportWeakAXp(P) Ź Feature t is included in any AXp X Ď P
13: return true
14: HÐ HY newNegCl(P; t, κ) Ź t unneeded for keeping prediction; block set
15: until outc = false
16: return false Ź If H becomes inconsistent, then there is no AXp that contains t
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Part 6

Advanced Topics



Outline – Part 6

Inflated Explanations

Probabilistic Explanations

Constrained Explanations

Distance-Restricted Explanations

Certified Explainability



Towards more expressive explanations – inflated explanations

[IISM24]

• Recall:
WAXp(X ) := @(x P F).

ľ

jPX
(xj = vj)Ñ(κ(x) = c)

• For non-boolean features, use of =may convey little information, e.g. with real-valued features,
having x1 = 1.157 does not help in understanding what values of feature 1 are also acceptable

• Inflated explanations allow for more expressive literals, i.e. = replaced with P, and
individual values replaced by ranges of values

• Definition: Given an AXp, expand set of values of each feature, in some chosen order, such that
the set of picked features remains unchanged
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Towards more expressive explanations – inflated explanations

[IISM24]

• Recall:
WAXp(X ) := @(x P F).
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Inflated explanations – an example

[IIM22]

x1

Y x2

x3

x1

Y N

Y

N

P t4..MxPu P t0..3u

P tMnA..25u

P t0u

P t2, 3u P t0, 1u

P t1u

P t26..MxAu

1

2
3

4

6

8 9

7

5

• Explanation for ((1, 10, 0, 2), Y)? (Obs: MnA ď 10)

• AXp: t1, 2u
• Default interpretation: @(x P F).(x1 = 2^ x2 = 10)Ñ(κ(x) = Y)
• With inflated explanations: @(x P F).(x1 P t2..MxPu ^ x2 P tMnA..25u)Ñ(κ(x) = Y)
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Approach

• Compute AXp X
• For each feature:

• Categorical: iteratively add elements to literal
• Ordinal:

• Expand literal for larger values;
• Expand literal for smaller values

• Obs: More complex alternative is to find AXp and expanded domains simultaneously
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Probabilistic (formal) explanations

[WMHK21, IIN+22, IHI+22, ABOS22, IHI+23, IMM24]

• Explanation size is critical for human understanding [Mil56]

• Probabilistic explanations provide smaller explanations, by trading off rigor of
explanation by explanation size

• Definition of weak probabilistic AXp X Ď F :

WPAXp(X ) := Pr(κ(x) = c) | xX = vX ) ě δ

• Obs: xX = vX requires points x P F to match the values of v for the features dictated by X
• Obs: for δ = 1 we obtain a WAXp

• But definition of WPAXp is non-monotonic
• Standard algorithms for finding one AXp cannot be used
• Recent dedicated algorithms for simple ML models [IHI+23]

• Recent approximate algorithms for simple ML models [IMM24]
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Results for decision trees

Dataset
MinPAXp LmPAXp Anchor

DT Path δ Length Prec Time Length Prec mĎ Time D Length Prec Time

N A M m avg M m avg avg avg M m avg avg avg M m avg FRP avg avg
100 11 3 6.8 100 2.34 11 3 6.9 100 100 0.00 d 12 2 7.0 26.8 76.8 0.96

adult 1241 89 14 3 10.7 95 11 3 6.2 98.4 5.36 11 3 6.3 98.6 99.0 0.01 u 12 3 10.0 29.4 93.7 2.20

90 11 2 5.6 94.6 4.64 11 2 5.8 95.2 96.4 0.01

100 12 1 4.4 100 0.35 12 1 4.4 100 100 0.00 d 31 1 4.8 58.1 32.9 3.10

dermatology 71 100 13 1 5.1 95 12 1 4.1 99.7 0.37 12 1 4.1 99.7 99.3 0.00 u 34 1 13.1 43.2 87.2 25.13

90 11 1 4.0 98.8 0.35 11 1 4.0 98.8 100 0.00

100 12 2 4.8 100 0.93 12 2 4.9 100 100 0.00 d 36 2 7.9 44.8 69.4 1.94

kr-vs-kp 231 100 14 3 6.6 95 11 2 3.9 98.1 0.97 11 2 4.0 98.1 100 0.00 u 12 2 3.6 16.6 97.3 1.81

90 10 2 3.2 95.4 0.92 10 2 3.3 95.4 99.0 0.00

100 12 4 8.2 100 16.06 11 4 8.2 100 100 0.00 d 16 3 13.2 43.1 71.3 12.22

letter 3261 93 14 4 11.8 95 12 4 8.0 99.6 18.28 11 4 8.0 99.5 100 0.00 u 16 3 13.7 47.3 66.3 10.15

90 12 4 7.7 97.7 16.35 10 4 7.8 97.8 100 0.00

100 14 3 6.4 100 0.92 14 3 6.5 100 100 0.00 d 35 2 8.6 55.4 33.6 5.43

soybean 219 100 16 3 7.3 95 14 3 6.4 99.8 0.95 14 3 6.4 99.8 100 0.00 u 35 3 19.2 66.0 75.0 38.96

90 14 3 6.1 98.1 0.94 14 3 6.1 98.2 98.5 0.00

0 12 3 7.4 100 1.23 12 3 7.5 100 100 0.01 d 38 2 6.3 65.3 63.3 24.12

spambase 141 99 14 3 8.5 95 9 1 3.7 96.1 2.16 9 1 3.8 96.5 100 0.01 u 57 3 28.0 86.2 65.3 834.70

90 6 1 2.4 92.4 2.15 8 1 2.4 92.2 100 0.01

Table 1: Assessing explanations of MinPAXp, LmPAXp and Anchor for DTs. (For each dataset, we run the explainers on
500 samples randomly picked or all samples if there are less than 500.) In column DT, N and A denote, resp., the
number of nodes and the training accuracy of the DT. Column δ reports (in %) the value of the threshold δ. In column
Path, avg (resp. M and m) denotes the average (resp. max. and min.) depth of paths consistent with the instances. In
column Length, avg (resp. M and m) denotes the average (resp. max. and min.) length of the explanations; and FRP
denotes the avg. % of features in Anchor’s explanations that do not belong to the consistent paths. Prec reports (in
%) the average precision (defined in (??)) of resulting explanations. mĎ shows the number in (%) of LmPAXp’s that are
subset-minimal, i.e. PAXp’s. Time reports (in seconds) the average runtime to compute an explanation. Finally, D
indicates which distribution is applied on data given to Anchor: either data distribution (denoted by d) or uniform
distribution (denoted by u).
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Results for naive Bayes classifiers

Dataset (#F #I) NBC AXp LmPAXpď9 LmPAXpď7 LmPAXpď4

A% Length δ Length Precision W% Time Length Precision W% Time Length Precision W% Time

adult (13 200) 81.37 6.8˘ 1.2

98 6.8˘ 1.1 100˘ 0.0 100 0.003 6.3˘ 0.9 99.61˘ 0.6 96 0.023 4.8˘ 1.3 98.73˘ 0.5 48 0.059

95 6.8˘ 1.1 99.99˘ 0.2 100 0.074 5.9˘ 1.0 98.87˘ 1.8 99 0.058 3.9˘ 1.0 96.93˘ 1.1 80 0.071

93 6.8˘ 1.1 99.97˘ 0.4 100 0.104 5.7˘ 1.3 98.34˘ 2.6 100 0.086 3.4˘ 0.9 95.21˘ 1.6 90 0.093

90 6.8˘ 1.1 99.95˘ 0.6 100 0.164 5.5˘ 1.4 97.86˘ 3.4 100 0.100 3.0˘ 0.8 93.46˘ 1.5 94 0.103

agaricus (23 200) 95.41 10.3˘ 2.5

98 7.7˘ 2.7 99.12˘ 0.8 92 0.593 6.4˘ 3.0 98.75˘ 0.6 87 0.763 6.0˘ 3.1 98.67˘ 0.5 29 0.870

95 6.9˘ 3.1 97.62˘ 2.1 95 0.954 5.3˘ 3.2 96.59˘ 1.6 92 1.273 4.8˘ 3.3 96.24˘ 1.2 55 1.217

93 6.5˘ 3.1 96.65˘ 2.8 95 1.112 4.8˘ 3.1 95.38˘ 1.9 93 1.309 4.3˘ 3.1 94.92˘ 1.3 64 1.390

90 5.9˘ 3.3 94.95˘ 4.1 96 1.332 4.0˘ 3.0 92.60˘ 2.8 95 1.598 3.6˘ 2.8 92.08˘ 1.7 76 1.830

chess (37 200) 88.34 12.1˘ 3.7

98 8.1˘ 4.1 99.27˘ 0.6 64 0.383 5.9˘ 4.9 98.70˘ 0.4 64 0.454 5.7˘ 5.0 98.65˘ 0.4 46 0.457

95 7.7˘ 3.8 98.51˘ 1.4 68 0.404 5.5˘ 4.4 97.90˘ 0.9 64 0.483 5.3˘ 4.5 97.85˘ 0.8 46 0.478

93 7.3˘ 3.5 97.56˘ 2.4 68 0.419 5.0˘ 4.1 96.26˘ 2.2 64 0.485 4.8˘ 4.1 96.21˘ 2.1 64 0.493

90 7.3˘ 3.5 97.29˘ 2.9 70 0.413 4.9˘ 4.0 95.99˘ 2.6 64 0.483 4.8˘ 4.0 95.93˘ 2.5 64 0.543

vote (17 81) 89.66 5.3˘ 1.4

98 5.3˘ 1.4 100˘ 0.0 100 0.000 5.3˘ 1.3 99.95˘ 0.2 100 0.007 4.6˘ 1.1 99.60˘ 0.4 64 0.014

95 5.3˘ 1.4 100˘ 0.0 100 0.000 5.3˘ 1.3 99.93˘ 0.3 100 0.008 4.1˘ 1.0 98.25˘ 1.7 64 0.018

93 5.3˘ 1.4 100˘ 0.0 100 0.000 5.2˘ 1.3 99.78˘ 1.1 100 0.012 4.1˘ 0.9 98.10˘ 1.9 64 0.018

90 5.3˘ 1.4 100˘ 0.0 100 0.000 5.2˘ 1.3 99.78˘ 1.1 100 0.012 4.0˘ 1.2 97.24˘ 3.1 64 0.022

kr-vs-kp (37 200) 88.07 12.2˘ 3.9

98 7.8˘ 4.2 99.19˘ 0.5 64 0.387 6.5˘ 4.7 98.99˘ 0.4 64 0.427 6.1˘ 4.9 98.88˘ 0.3 43 0.457

95 7.3˘ 3.9 98.29˘ 1.4 64 0.416 6.0˘ 4.3 97.89˘ 1.1 64 0.453 5.5˘ 4.5 97.79˘ 0.9 43 0.462

93 6.9˘ 3.5 97.21˘ 2.5 69 0.422 5.6˘ 3.8 96.82˘ 2.2 64 0.448 5.2˘ 4.0 96.71˘ 2.1 43 0.468

90 6.8˘ 3.5 96.65˘ 3.1 69 0.418 5.4˘ 3.8 95.69˘ 3.0 64 0.468 5.0˘ 4.0 95.59˘ 2.8 61 0.487

mushroom (23 200) 95.51 10.7˘ 2.3

98 7.5˘ 2.4 98.99˘ 0.7 90 0.641 6.5˘ 2.6 98.74˘ 0.5 83 0.751 6.3˘ 2.7 98.70˘ 0.4 18 0.828

95 6.5˘ 2.6 97.35˘ 1.8 96 1.011 5.1˘ 2.5 96.52˘ 1.0 90 1.130 5.0˘ 2.5 96.39˘ 0.8 54 1.113

93 5.8˘ 2.8 95.77˘ 2.7 96 1.257 4.4˘ 2.5 94.67˘ 1.6 94 1.297 4.2˘ 2.4 94.48˘ 1.3 65 1.324

90 5.3˘ 3.0 94.01˘ 3.9 97 1.455 3.8˘ 2.3 92.36˘ 2.2 96 1.543 3.6˘ 2.2 92.07˘ 1.6 76 1.650

threeOf9 (10 103) 83.13 4.2˘ 0.4

98 4.2˘ 0.4 100˘ 0.0 100 0.000 4.2˘ 0.4 100˘ 0.0 100 0.000 4.2˘ 0.4 100˘ 0.0 78 0.001

95 4.2˘ 0.4 100˘ 0.0 100 0.000 4.2˘ 0.4 100˘ 0.0 100 0.000 4.0˘ 0.2 99.23˘ 1.4 100 0.002

93 4.2˘ 0.4 100˘ 0.0 100 0.000 4.2˘ 0.4 100˘ 0.0 100 0.000 3.9˘ 0.2 99.20˘ 1.5 100 0.002

90 4.2˘ 0.4 100˘ 0.0 100 0.000 4.2˘ 0.4 100˘ 0.0 100 0.000 3.8˘ 0.4 98.29˘ 3.3 100 0.003

xd6 (10 176) 81.36 4.5˘ 0.9

98 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 73 0.001

95 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 73 0.001

93 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 100 0.000 4.3˘ 0.4 98.30˘ 2.7 73 0.001

90 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 100 0.000 4.3˘ 0.4 98.30˘ 2.7 73 0.002

mamo (14 53) 80.21 4.9˘ 0.8

98 4.9˘ 0.7 100˘ 0.0 100 0.000 4.9˘ 0.7 100˘ 0.0 100 0.000 4.6˘ 0.6 99.66˘ 0.5 53 0.007

95 4.9˘ 0.7 100˘ 0.0 100 0.000 4.9˘ 0.7 100˘ 0.0 100 0.000 3.9˘ 0.6 97.80˘ 1.6 85 0.009

93 4.9˘ 0.7 100˘ 0.0 100 0.000 4.9˘ 0.7 100˘ 0.0 100 0.000 3.9˘ 0.6 97.68˘ 1.7 85 0.009

90 4.9˘ 0.7 100˘ 0.0 100 0.000 4.9˘ 0.7 100˘ 0.0 100 0.000 3.6˘ 0.8 96.18˘ 3.2 96 0.011

tumor (16 104) 83.21 5.3˘ 0.9

98 5.3˘ 0.8 100˘ 0.0 100 0.000 5.2˘ 0.7 99.96˘ 0.2 100 0.008 4.1˘ 0.7 99.41˘ 0.5 91 0.012

95 5.3˘ 0.8 100˘ 0.0 100 0.000 5.2˘ 0.6 99.83˘ 0.7 100 0.012 3.2˘ 0.6 96.02˘ 1.5 94 0.016

93 5.3˘ 0.8 100˘ 0.0 100 0.000 5.2˘ 0.6 99.74˘ 1.2 100 0.014 3.1˘ 0.7 95.50˘ 1.4 95 0.016

90 5.3˘ 0.8 100˘ 0.0 100 0.000 5.1˘ 0.7 99.67˘ 1.4 100 0.016 3.0˘ 0.6 95.30˘ 1.6 95 0.017

Table 2: Assessing LmPAXp explanations for NBCs. Columns #F and #I show, respectively, number of features and
tested instances in the Dataset. Column A% reports (in %) the training accuracy of the classifier. Column δ reports (in
%) the value of the parameter δ. LmPAXpď9 , LmPAXpď7 and LmPAXpď4 denote, respectively, LmPAXp’s of (target)
length 9, 7 and 4. Columns Length and Precision report, respectively, the average explanation length and the average
explanation precision (˘ denotes the standard deviation). W% shows (in %) the number of success/wins where the
explanation size is less than or equal to the target size. Finally, the average runtime to compute an explanation is
shown (in seconds) in Time. (Note that the reported average time is the mean of runtimes for instances for which we
effectively computed an approximate explanation, namely instances that have AXp’s of length longer than the target
length; whereas for the remaining instances the trimming process is skipped and the runtime is 0 sec, thus we
exclude them when calculating the average.)
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Results for decision diagrams

Dataset #I #F δ

MinPAXp LmPAXp

OMDD Length Prec Time Length Prec mĎ Time

#N A% M m avg avg avg M m avg avg avg
100 9 6 8.0 100 24.24 9 6 7.9 100 100 1.57

lending 100 9 1103 81.7 95 9 5 7.8 99.7 21.48 9 6 7.8 99.8 100 1.49
90 9 4 7.2 96 24.65 9 5 7.4 97.0 100 1.48

100 6 4 5.1 100 0.10 6 4 5.1 100 100 0.03
monk2 100 6 70 79.3 95 6 4 5.1 100 0.09 6 4 5.1 100 100 0.03

90 6 3 4.8 98.1 0.09 6 3 4.8 98.1 100 0.03

100 8 4 6.1 100 0.26 8 4 6.2 100 100 0.04
postoperative 74 8 109 80 95 8 2 6.0 99.3 0.25 8 2 6.0 99.3 100 0.04

90 8 2 5.3 95.9 0.23 8 2 5.4 96.6 94.6 0.04

100 9 5 7.7 100 3.60 9 5 7.8 100 100 0.38
tic_tac_toe 100 9 424 70.3 95 9 5 7.5 99.5 3.24 9 5 7.7 99.6 99.0 0.38

90 9 3 7.3 98.3 4.06 9 3 7.5 98.6 98.0 0.38

100 9 4 4.6 100 0.10 9 4 4.6 100 100 0.03
xd6 100 9 76 83.1 95 9 3 3.8 97 0.09 9 3 3.8 97.0 99.0 0.03

90 9 3 3.3 94.8 0.10 9 3 3.4 94.6 100 0.03

Table 3: Assessing MinPAXp and LmPAXp explanations of OMDDs. Columns #I, #F denote, resp. the number of tested
instances and the number of features. In column OMDD, N and A denote, resp., the number of nodes and the test
accuracy of the OMDD. Column δ reports (in %) the value of the threshold δ. In column Length, avg (resp. M and m)
denotes the average (resp. max. and min.) length of the explanations. Prec reports (in %) the average precision
(defined in (??)) of resulting explanations. mĎ shows the number in (%) of LmPAXp’s that are subset-minimal, i.e.
PAXp’s. Time reports (in seconds) the average runtime to compute an explanation.
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Not all inputs may be possible – input constraints

[GR22, YIS+23]

• Infer constraints on the inputs
• Learn simple rules relating inputs
• Represent rules as a constraint set, e.g. C(x)

• Redefine WAXps/WCXps to account for input constraints:

@(x P F).
[
ľ

jPX
(xj = vj)^ C(x)

]
Ñ(κ(x) = c)

D(x P F).
[
ľ

jPX
(xj = vj)^ C(x)

]
^ (κ(x) ­= c)

• Compute AXps/CXps given new definitions

• Constrained AXps/CXps find other applications!
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How to tackle poor performance on NNs?

• For NNs, computation of AXps scales to a few tens of neurons [INM19a]

• But, robustness tools scale for much larger NNs

• Q: can we relate AXps with adversarial examples?
• Obs: we already proved some basic (duality) properties for global explanations [INM19b]

• Change definition of WAXp/WCXp to account for lp distance to v:

@(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
Ñ(σ(x))

D(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
^ (␣σ(x))

• Norm lp is arbitrary, e.g. Hamming, Manhattan, Euclidean, etc.
• Distance-restricted explanations: dAXp/dCXp
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An example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:

• AXps?
• CXps?

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• dAXps?
• dCXps?

• Given ϵ, larger adversarial examples are
excluded
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Relating explanations with adversarial examples

• Distance-restricted WAXps/WCXps:

@(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
Ñ(σ(x))

D(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
^ (␣σ(x))

• Given norm lp and distance ϵ, there exists a (distance-restricted) WCXp iff there exists an
adversarial example

• Use robustness tool to decide existence of WCXp
• But, WAXp decided given non existence of CXp!

• Efficiency of distance-restricted explanations correlates with efficiency of finding
adversarial examples

• One can use most complete robustness tools, e.g. VNN-COMP [BMB+23]

• At present: clear scalability improvements for explaining NNs (see next) [HM23b, WWB23, IHM+24]
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Basic algorithm [HM23b]

Input: Arguments: ϵ; Parameters: E , p
Output: One dAXp S

1: function FindAXpDel(ϵ; E ,p)
2: S Ð F Ź Initially, no feature is allowed to change
3: for i P F do Ź Invariant: dWAXp(S)
4: S Ð Sztiu
5: outcÐ FindAdvEx(ϵ,S; E ,p)
6: if outc then
7: S Ð S Y tiu
8: return S Ź dWAXp(S)^minimal(S)Ñ dAXp(S)
• Necessary to tackle number of features:

• Exploiting parallelization [IHM+24]
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Results for NNs in 2023 (using Marabou [KHI+19]) [HM23b]

DNN points |AXp| #Calls Time #TO |AXp| #Calls Time #TO

ϵ = 0.1 ϵ = 0.05

ACASXU_1_5
#1 3 5 185.9 0 2 5 113.8 0
#2 2 5 273.8 0 1 5 33.2 0
#3 0 5 714.2 0 0 5 4.3 0

ACASXU_3_1
#1 0 5 2219.3 0 0 5 14.2 0
#2 2 5 4263.5 1 0 5 1853.1 0
#3 1 5 581.8 0 0 5 355.9 0

ACASXU_3_2
#1 3 5 13739.3 2 1 5 6890.1 1
#2 3 5 226.4 0 2 5 125.1 0
#3 2 5 1740.6 0 2 5 173.6 0

ACASXU_3_5
#1 4 5 43.6 0 2 5 59.4 0
#2 3 5 5039.4 0 2 5 4303.8 1
#3 2 5 5574.9 1 2 5 2660.3 0

ACASXU_3_6
#1 1 5 6225.0 1 0 5 51.0 0
#2 3 5 4957.2 1 2 5 1897.3 0
#3 1 5 196.1 0 1 5 919.2 0

ACASXU_3_7
#1 3 5 6256.2 0 4 5 26.9 0
#2 4 5 311.3 0 1 5 6958.6 1
#3 2 5 7756.5 1 1 5 7807.6 1

ACASXU_4_1
#1 2 5 12413.0 2 1 5 5090.5 1
#2 1 5 5035.1 1 0 5 2335.6 0
#3 4 5 1237.3 0 4 5 1143.4 0

ACASXU_4_2
#1 4 5 15.9 0 4 5 12.1 0
#2 3 5 1507.6 0 1 5 111.3 0
#3 2 5 5641.6 2 0 5 1639.1 0

Scales to a few
hundred neurons
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More recent results (from 2024)... [IHM+24]

Model Deletion SwiftXplain

avgC nCalls Len Mn Mx avg TO avgC nCalls Len FD% Mn Mx avg
gtsrb-dense 0.06 1024 448 52.0 76.3 63.1 0 0.23 54 447 77.4 10.8 14.0 12.2

gtsrb-convSmall 0.06 1024 309 59.2 82.6 65.1 0 0.22 74 313 39.7 15.1 19.5 16.2

gtsrb-conv — — — — — — 100 96.49 45 174 33.2 3858.7 6427.7 4449.4

mnist-denseSmall 0.28 784 177 190.9 420.3 220.4 0 0.77 111 180 15.5 77.6 104.4 85.1

mnist-dense 0.19 784 231 138.1 179.9 150.6 0 0.75 183 229 11.5 130.1 145.5 136.8

mnist-convSmall — — — — — — 100 98.56 52 116 21.3 4115.2 6858.3 5132.8

Scales to
thousands of neurons

Largest for MNIST: 10142 neurons
Largest for GSTRB: 94308 neurons
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Outline – Part 6

Inflated Explanations

Probabilistic Explanations

Constrained Explanations

Distance-Restricted Explanations

Certified Explainability



Certified explainer (for monotonic classification)

[HM23f]

• The implementation of a correct algorithm may not be correct
• Even comprehensive testing of implemented algorithms does not guarantee correctness

• Certification of implementations is one possible alternative

• Formalize algorithm, e.g. explanations for monotonic classifiers, e.g. using Coq
• Prove that formalized algorithm is correct
• Extract certified algorithm from proof of correctness

• Downsides:
• Efficiency of certified algorithm
• Dedicated algorithm for each explainer

• Certification envisioned for any explainability algorithm
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Part 7

Principles of Symbolic XAI – Feature Attribution



Outline – Part 7

Exact Shapley Values for XAI

Myth #03: Shapley Values for XAI

Corrected SHAP Scores

Detour: Power Indices

Feature Importance Scores



What are Shapley values?

• First proposed in game theory in the early 50s [Sha53]

• Measures the contribution of each player to a cooperative game

• Application in XAI since the 2000s [LC01, SK10, SK14, DSZ16, LL17]

• Popularized by SHAP [LL17]

• Used for feature attribution, i.e. relative feature importance

• Shapley values are becoming ubiquitous in XAI...

• Q: Do Shapley values for XAI really provide a rigorous measure of feature importance?

114 / 144



What are Shapley values?

• First proposed in game theory in the early 50s [Sha53]

• Measures the contribution of each player to a cooperative game

• Application in XAI since the 2000s [LC01, SK10, SK14, DSZ16, LL17]

• Popularized by SHAP [LL17]

• Used for feature attribution, i.e. relative feature importance

• Shapley values are becoming ubiquitous in XAI...

• Q: Do Shapley values for XAI really provide a rigorous measure of feature importance?

114 / 144



What are Shapley values?

• First proposed in game theory in the early 50s [Sha53]

• Measures the contribution of each player to a cooperative game

• Application in XAI since the 2000s [LC01, SK10, SK14, DSZ16, LL17]

• Popularized by SHAP [LL17]

• Used for feature attribution, i.e. relative feature importance

• Shapley values are becoming ubiquitous in XAI...

• Q: Do Shapley values for XAI really provide a rigorous measure of feature importance?

114 / 144



What are Shapley values?

• First proposed in game theory in the early 50s [Sha53]

• Measures the contribution of each player to a cooperative game

• Application in XAI since the 2000s [LC01, SK10, SK14, DSZ16, LL17]

• Popularized by SHAP [LL17]

• Used for feature attribution, i.e. relative feature importance

• Shapley values are becoming ubiquitous in XAI...

• Q: Do Shapley values for XAI really provide a rigorous measure of feature importance?
114 / 144



How are Shapley values used in explainability?

• Instance: (v, c)

• Υ: 2F Ñ 2F defined by, [ABBM21]

Υ(S) = tx P F | ^iPS xi = viu

Υ(S) gives points in feature space having the features in S fixed to their values in v
• ϕ: 2F Ñ R defined by,

ϕ(S) = 1/2|FzS|
ÿ

xPΥ(S)
κ(x)

ϕ(S) represents the expected value of the classifier on the points given by Υ(S)
• Sc: F Ñ R defined by,

Sc(i) =
ÿ

SĎ(Fztiu)

|S|!(|F | ´ |S| ´ 1)!

|F |!
ˆ (ϕ(S Y tiu)´ ϕ(S))

For all subsets of features, excluding i, compute the expected value of the classifier, with
and without i fixed, weighted by 1

n
( n

|S|

)´1

• Obs: Uniform distribution assumed; it suffices for our purposes
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• ϕ: 2F Ñ R defined by,

ϕ(S) = 1/2|FzS|
ÿ

xPΥ(S)
κ(x)

ϕ(S) represents the expected value of the classifier on the points given by Υ(S)
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How are Shapley values computed in practice?

• Exact evaluation is computationally (very) hard [VLSS21, ABBM21]

• SHAP proposes a sample-based approach; with no guarantees of rigor [LL17]

• Recent experiments prove no correlation between Shapley values and SHAP’s results [HM23c]

• Polynomial-time algorithm for deterministic decomposable boolean circuits [ABBM21]

• Polynomial-time algorithm for boolean functions represented with a truth-table [HM23c]
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What do Shapley values tell in terms of feature importance?

• [SK10] reads:
“According to the 2nd axiom, if two features values have an identical influence on the
prediction they are assigned contributions of equal size. The 3rd axiom says that if a
feature has no influence on the prediction it is assigned a contribution of 0.”
(Obs: the axioms refer to the axiomatic characterization of Shapley values.)

• And [SK10] also reads:
“When viewed together, these properties ensure that any effect the features might have
on the classifiers output will be reflected in the generated contributions, which effectively
deals with the issues of previous general explanation methods.”

• Obs: Shapley values are defined axiomatically, i.e. no immediate relationship with
AXp’s/CXp’s or with feature (ir)relevancy

• Qs: can we have irrelevant features with a non-zero Shapley value, or relevant features with a
Shapley of zero?

• Recap: relevant features occur in some AXp/CXp; irrelevant features do not occur in any AXp/CXp

117 / 144



What do Shapley values tell in terms of feature importance?

• [SK10] reads:
“According to the 2nd axiom, if two features values have an identical influence on the
prediction they are assigned contributions of equal size. The 3rd axiom says that if a
feature has no influence on the prediction it is assigned a contribution of 0.”
(Obs: the axioms refer to the axiomatic characterization of Shapley values.)

• And [SK10] also reads:
“When viewed together, these properties ensure that any effect the features might have
on the classifiers output will be reflected in the generated contributions, which effectively
deals with the issues of previous general explanation methods.”

• Obs: Shapley values are defined axiomatically, i.e. no immediate relationship with
AXp’s/CXp’s or with feature (ir)relevancy

• Qs: can we have irrelevant features with a non-zero Shapley value, or relevant features with a
Shapley of zero?

• Recap: relevant features occur in some AXp/CXp; irrelevant features do not occur in any AXp/CXp

117 / 144



What do Shapley values tell in terms of feature importance?

• [SK10] reads:
“According to the 2nd axiom, if two features values have an identical influence on the
prediction they are assigned contributions of equal size. The 3rd axiom says that if a
feature has no influence on the prediction it is assigned a contribution of 0.”
(Obs: the axioms refer to the axiomatic characterization of Shapley values.)

• And [SK10] also reads:
“When viewed together, these properties ensure that any effect the features might have
on the classifiers output will be reflected in the generated contributions, which effectively
deals with the issues of previous general explanation methods.”

• Obs: Shapley values are defined axiomatically, i.e. no immediate relationship with
AXp’s/CXp’s or with feature (ir)relevancy

• Qs: can we have irrelevant features with a non-zero Shapley value, or relevant features with a
Shapley of zero?

• Recap: relevant features occur in some AXp/CXp; irrelevant features do not occur in any AXp/CXp

117 / 144



What do Shapley values tell in terms of feature importance?

• [SK10] reads:
“According to the 2nd axiom, if two features values have an identical influence on the
prediction they are assigned contributions of equal size. The 3rd axiom says that if a
feature has no influence on the prediction it is assigned a contribution of 0.”
(Obs: the axioms refer to the axiomatic characterization of Shapley values.)

• And [SK10] also reads:
“When viewed together, these properties ensure that any effect the features might have
on the classifiers output will be reflected in the generated contributions, which effectively
deals with the issues of previous general explanation methods.”

• Obs: Shapley values are defined axiomatically, i.e. no immediate relationship with
AXp’s/CXp’s or with feature (ir)relevancy

• Qs: can we have irrelevant features with a non-zero Shapley value, or relevant features with a
Shapley of zero?

• Recap: relevant features occur in some AXp/CXp; irrelevant features do not occur in any AXp/CXp

117 / 144



Outline – Part 7

Exact Shapley Values for XAI

Myth #03: Shapley Values for XAI

Corrected SHAP Scores

Detour: Power Indices

Feature Importance Scores



Shapley values vs. feature (ir)relevancy – identified issues [HM23c, HM23d, HM23e, MH23]

• Boolean classifier, instance (v, c), and some i, i1, i2 P F :

• Issue I1 occurs if,
Irrelevant(i)^ (Sv(i) ­= 0)

• Issue I2 occurs if,
Irrelevant(i1)^ Relevant(i2)^ (|Sv(i1)| ą |Sv(i2)|)

• Issue I3 occurs if,
Relevant(i)^ (Sv(i) = 0)

• Issue I4 occurs if,

[Irrelevant(i1)^ (Sv(i1) ­= 0)]^ [Relevant(i2)^ (Sv(i2) = 0)]

• Issue I5 occurs if,
[Irrelevant(i)^ @1ďjďm,j­=i (|Sv(j)| ă |Sv(i)|)]
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Any of these issues is a cause
of (serious) concern per se!
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Some stats – all boolean functions with 4 variables [HM23c, HM23d, HM23e, MH23]

Issue-related metric Value Recap issue

# of functions 65536
# number of instances 1048576

# of I1 issues 781696
# of functions with I1 issues 65320
% I1 issues / function 99.67 [Irrelevant(i)^ (Sv(i) ­= 0)]

# of I2 issues 105184
# of functions with I2 issues 40448
% I2 issues / function 61.72 [Irrelevant(i1)^ Relevant(i2)^ (|Sv(i1)| ą |Sv(i2)|)]

# of I3 issues 43008
# of functions with I3 issues 7800
% I3 issues / function 11.90 [Relevant(i)^ (Sv(i) = 0)]

# of I4 issues 5728
# of functions with I4 issues 2592
% I4 issues / function 3.96 [Irrelevant(i1)^ (Sv(i1) ­= 0)]^ [Relevant(i2)^ (Sv(i2) = 0)]

# of I5 issues 1664
# of functions with I5 issues 1248
% I5 issues / function 1.90 [Irrelevant(i)^ @1ďjďm,j­=i (|Sv(j)| ă |Sv(i)|)]
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Previous results do matter! Let’s go non-boolean...

x1

x3

x2

4 7

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
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DT1

row # x1 x2 x3 κ1(x) κ2(x)
1 0 0 0 0 0
2 0 0 1 4 2
3 0 0 2 0 0
4 0 1 0 0 0
5 0 1 1 7 3
6 0 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1
11 1 1 1 1 1
12 1 1 2 1 1

Tabular representations

x1

x3

x2

2 3

0
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P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1
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4
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5
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DT2

XPs: AXps/CXps
DT AXps CXps
DT1 t1u t1u

DT2 t1u t1u

Adversarial Examples
DT l0-minimal AEs
DT1 t1u

DT2 t1u

Shapley values
DT Sc(1) Sc(2) Sc(3)
DT1 0.000 0.083 -0.500

!!!

DT2 0.278 0.028 -0.222

!!

6 Shapley values can mislead
human decision-makers !

Sv issues also occur
in practice [HM23e]
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Instance ((1, 1, 2), 1) – which feature matters the most for prediction 1?
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Computing XPs – make sense...
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Computing XPs, AEs – also make sense...
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Computing XPs, AEs & Svs
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Computing XPs, AEs & Svs – what???

x1

x3

x2

4 7

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT1

row # x1 x2 x3 κ1(x) κ2(x)
1 0 0 0 0 0
2 0 0 1 4 2
3 0 0 2 0 0
4 0 1 0 0 0
5 0 1 1 7 3
6 0 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1
11 1 1 1 1 1
12 1 1 2 1 1

Tabular representations

x1

x3

x2

2 3

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT2

XPs: AXps/CXps
DT AXps CXps
DT1 t1u t1u

DT2 t1u t1u

Adversarial Examples
DT l0-minimal AEs
DT1 t1u

DT2 t1u

Shapley values
DT Sc(1) Sc(2) Sc(3)
DT1 0.000 0.083 -0.500 !!!
DT2 0.278 0.028 -0.222

!!

6 Shapley values can mislead
human decision-makers !

Sv issues also occur
in practice [HM23e]

120 / 144



Computing XPs, AEs & Svs – what???

x1

x3

x2

4 7

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT1

row # x1 x2 x3 κ1(x) κ2(x)
1 0 0 0 0 0
2 0 0 1 4 2
3 0 0 2 0 0
4 0 1 0 0 0
5 0 1 1 7 3
6 0 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1
11 1 1 1 1 1
12 1 1 2 1 1

Tabular representations

x1

x3

x2

2 3

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT2

XPs: AXps/CXps
DT AXps CXps
DT1 t1u t1u

DT2 t1u t1u

Adversarial Examples
DT l0-minimal AEs
DT1 t1u

DT2 t1u

Shapley values
DT Sc(1) Sc(2) Sc(3)
DT1 0.000 0.083 -0.500 !!!
DT2 0.278 0.028 -0.222 !!

6 Shapley values can mislead
human decision-makers !

Sv issues also occur
in practice [HM23e]

120 / 144



Computing XPs, AEs & Svs – what???

x1

x3

x2

4 7

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT1

row # x1 x2 x3 κ1(x) κ2(x)
1 0 0 0 0 0
2 0 0 1 4 2
3 0 0 2 0 0
4 0 1 0 0 0
5 0 1 1 7 3
6 0 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1
11 1 1 1 1 1
12 1 1 2 1 1

Tabular representations

x1

x3

x2

2 3

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT2

XPs: AXps/CXps
DT AXps CXps
DT1 t1u t1u

DT2 t1u t1u

Adversarial Examples
DT l0-minimal AEs
DT1 t1u

DT2 t1u

Shapley values
DT Sc(1) Sc(2) Sc(3)
DT1 0.000 0.083 -0.500 !!!
DT2 0.278 0.028 -0.222 !!

6 Shapley values can mislead
human decision-makers !

Sv issues also occur
in practice [HM23e]

120 / 144



Computing XPs, AEs & Svs – what???

x1

x3

x2

4 7

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT1

row # x1 x2 x3 κ1(x) κ2(x)
1 0 0 0 0 0
2 0 0 1 4 2
3 0 0 2 0 0
4 0 1 0 0 0
5 0 1 1 7 3
6 0 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1
11 1 1 1 1 1
12 1 1 2 1 1

Tabular representations

x1

x3

x2

2 3

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT2

XPs: AXps/CXps
DT AXps CXps
DT1 t1u t1u

DT2 t1u t1u

Adversarial Examples
DT l0-minimal AEs
DT1 t1u

DT2 t1u

Shapley values
DT Sc(1) Sc(2) Sc(3)
DT1 0.000 0.083 -0.500 !!!
DT2 0.278 0.028 -0.222 !!

6 Shapley values can mislead
human decision-makers !

Sv issues also occur
in practice [HM23e]

120 / 144



Another example – arbitrary mistakes!

x1

x2

1 ´ 6α 1 + 2α

1

P t0u

P t0u P t1u

P t1u1

2

4 5

3

• Instance: ((1, 1), 1)
• ScE(1) = 0

• ScE(2) = α
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More detail

row x1 x2 ρ(x) ρa(x)
α = 1/2

ρb(x)
α = 1/4

1 0 0 1´ 6α ´2 ´1/2

2 0 1 1 + 2α 2 3/2

3 1 0 1 1 1
4 1 1 1 1 1

x1

x2

1 ´ 6α 1 + 2α

1

P t0u

P t0u P t1u

P t1u1

2

4 5

3

S rows(S) υe(S)

H 1, 2, 3, 4 1´ α

tx1u 3, 4 1

tx2u 2, 4 1 + α

tx1, x2u 4 1

i = 1

S υe(S) υe(S Y t1u) ∆1(S) ς(S) ς(S)ˆ∆1(S)

H 1´ α 1 α 1/2 α/2

t2u 1 + α 1 ´α 1/2 ´α/2

ScE(1) = 0
i = 2

S υe(S) υe(S Y t2u) ∆2(S) ς(S) ς(S)ˆ∆2(S)

H 1´ α 1 + α 2α 1/2 α

t1u 1 1 0 1/2 0

ScE(2) = α
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Outline – Part 7

Exact Shapley Values for XAI

Myth #03: Shapley Values for XAI

Corrected SHAP Scores

Detour: Power Indices

Feature Importance Scores



Corrected SHAP scores & feature importance scores

[LHMS24, LHAMS24]

• Is the theory of Shapley values incorrect?

• What is inadequate is the characteristic function used in XAI [SK10, SK14, LL17]

• Replace characteristic function based on expected values by new characteristic function
based on AXps/WAXps [LHMS24]

• Resulting scores are Shapley values, and identified issues no longer observed

• Observed tight connection between feature attribution and power indices from a priori
voting power

• Feature importance scores [LHAMS24]

• Generalize recent axiomatic aggregations [BIL+24]

• Adapt best known power indices
• Devise new scores for XAI
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An initial compromise

• Replace the characteristic function used for SHAP scores:

υe(S) := E[τ(x) | xS = vS ]

• Recall the similarity predicate:

σ(x) =
#

1 if (κ(x) = κ(v))
0 otherwise

• The new characteristic function becomes:

υs(S) := E[σ(x) | xS = vS ]

• Issues with non-boolean classifiers disappear; issues with boolean classifiers remain
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Fixing the known issues of SHAP scores

• New characteristic function:

υa(S) :=

#

1 if E[σ(x) | xS = vS ] = 1

0 otherwise

• Recall: E[σ(x) | xS = vS ] = 1 holds iff S is a WAXp

• Known issues of SHAP scores guaranteed not to occur
• Corrected SHAP scores reveal tight connection between XAI by feature selection (i.e.
WAXps) and feature attribution
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Outline – Part 7

Exact Shapley Values for XAI

Myth #03: Shapley Values for XAI

Corrected SHAP Scores

Detour: Power Indices

Feature Importance Scores



What is a priori voting power?

• General set up of weighted voting games:

• Assembly A of voters, with m = |A|
• Each voter i P A votes Yes with ni votes; otherwise no votes are counter (and he/she votes No)

• A coalition is a subset of voters, C Ď A
• Quota q is the sum of votes required for a proposal to be approved

• Coalitions leading to sums not less than q are winning coalitions

• A weighted voting game (WVG) is a tuple [q;n1, . . . ,nm]
• Example: [12; 4, 4, 4, 2, 2, 1]

• Problem: find a measure of importance of each voter !
• I.e. measure the a priori voting power of each voter
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An example – EEC (EU) members voting power in 1958

Coutry Acronym # Votes
France F 4
Germany D 4
Italy I 4

Belgium B 2
Netherlands N 2
Luxembourg L 1

Quota: 12

• WVG: [12; 4, 4, 4, 2, 2, 1]
• Q: What should be the voting power of
Luxembourg?

• Can Luxembourg (L) matter for some
winning coalition?

• Perhaps surprisingly, answer is No!
• In 1958, Luxembourg was a dummy
voter/player
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What are power indices?

• Power indices assign a measure of importance to each voter

• Many power indices proposed over the years:
• Penrose [Pen46]

• Shapley-Shubik [SS54]

• Banzhaf [BI65]

• Coleman [Col71]

• Johnston [Joh78]

• Deegan-Packel [DP78]

• Holler-Packel [HP83]

• Andjiga [ACL03]

• Responsability* [CH04, BIL+24]

• ...
• What characterizes power indices?

• Account for the cases when voter is critical for a winning coalition
• E.g. in previous example, Luxembourg is never critical for a winning coalition

• Account for whether coalition is subset-minimal or cardinality-minimal

128 / 144



What are power indices?

• Power indices assign a measure of importance to each voter
• Many power indices proposed over the years:

• Penrose [Pen46]

• Shapley-Shubik [SS54]

• Banzhaf [BI65]

• Coleman [Col71]

• Johnston [Joh78]

• Deegan-Packel [DP78]

• Holler-Packel [HP83]

• Andjiga [ACL03]

• Responsability* [CH04, BIL+24]

• ...

• What characterizes power indices?
• Account for the cases when voter is critical for a winning coalition

• E.g. in previous example, Luxembourg is never critical for a winning coalition

• Account for whether coalition is subset-minimal or cardinality-minimal

128 / 144



What are power indices?

• Power indices assign a measure of importance to each voter
• Many power indices proposed over the years:

• Penrose [Pen46]

• Shapley-Shubik [SS54]

• Banzhaf [BI65]

• Coleman [Col71]

• Johnston [Joh78]

• Deegan-Packel [DP78]

• Holler-Packel [HP83]

• Andjiga [ACL03]

• Responsability* [CH04, BIL+24]

• ...
• What characterizes power indices?

• Account for the cases when voter is critical for a winning coalition
• E.g. in previous example, Luxembourg is never critical for a winning coalition

• Account for whether coalition is subset-minimal or cardinality-minimal

128 / 144



Towards defining power indices

• Understanding criticality:

• Since the work of Shapley-Shubik [SS54], the criticality of a voter has been accounted for:
“Our definition of the power of an individual member depends on the chance he has of being
critical to the success of a winning coalition.”

• This means that a voter i is critical when:
• If the voter votes Yes, then we have a winning coalition; and
• If the voter votes No, then we have a losing coalition.

• Understanding minimal winning coalitions:

• A winning coalition is subset-minimal if removing any single voter results in a losing coalition
• A winning coalition is cardinality-minimal if it has the smallest cardinality among
subset-minimal winning coalitions

• Obs: A subset-minimal winning coalition corresponds to an AXp
• And a non-minimal winning coalition corresponds to a WAXp
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Example power indices I

• Necessary definitions:

WAi(E) = tS Ď F |WAXp(S; E)^ i P Su
WCi(E) = tS Ď F |WCXp(S; E)^ i P Su

Ai(E) = tS Ď F |AXp(S; E)^ i P Su
Ci(E) = tS Ď F | CXp(S; E)^ i P Su

• Definitions of WA, WC, A, and C mimic the ones above, but without specifying a voter

• Power indices of Holler-Packel and Deegan-Packel: [HP83, DP78]

ScH(i; E) =
ÿ

SPAi(E)
(1/|A(E)|)

ScD(i; E) =
ÿ

SPAi(E)
(1/(|S| ˆ |A(E)|))

• Obs: One only needs the AXps
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Example power indices II

• Additional definitions:

Crit(i,S; E) = WAXp(S; E)^␣WAXp(Sztiu; E)

• Power indices of Shapley-Shubik, Banzhaf and Johnston: [SS54, BI65, Joh78]

ScS(i; E) =
ÿ

SĎF^Crit(i,S;E)

(
1/

(
|F | ˆ

(|F | ´ 1

|S| ´ 1

)))
ScB(i; E) =

ÿ

SĎF^Crit(i,S;E)
(1/2|F|´1)

ScJ(i; E) =
ÿ

SĎF^Crit(i,S;E)
(1/∆(S))

• One needs the WAXps to find critical voters...
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Example #01

• WVG: [9; 9, 2, 2, 2, 2, 1, 1]

• AXps:
1
2 3 4 5 6
2 3 4 5 7

• Holler-Packel scores: x0.333, 0.667, 0.667, 0.667, 0.667, 0.333, 0.333y
• Banzhaf scores (normalized): x0.813, 0.040, 0.040, 0.040, 0.040, 0.013, 0.013y
• Shapley-Shubik scores: x0.810, 0.043, 0.043, 0.043, 0.043, 0.010, 0.010y

• Different relative orders of voter importance... which ones seem more realistic?
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Example #02

• WVG: [16; 10, 6, 4, 2, 2]

• AXps:
1 2

1 3 4

1 3 5

• Deegan-Packel scores: x0.389, 0.167, 0.222, 0.111, 0.111y
• Banzhaf scores (normalized): x0.524, 0.238, 0.143, 0.048, 0.048y
• Shapley-Shubik scores: x0.617, 0.200, 0.117, 0.033, 0.033y

• Different relative orders of voter importance... which ones seem more realistic?
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Example #03

• WVG: [6; 4, 2, 1, 1, 1, 1]

• AXps:
2 3 4 5 6
1 3 4
1 4 5
1 4 6
1 3 6
1 5 6
1 2
1 3 5

• Deegan-Packel scores: x0.312, 0.087, 0.150, 0.150, 0.150, 0.150y
• Banzhaf scores (normalized): x0.542, 0.125, 0.083, 0.083, 0.083, 0.083y
• Shapley-Shubik scores: x0.533, 0.133, 0.083, 0.083, 0.083, 0.083y

• Different relative orders of voter importance... which ones seem more realistic?
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Example #04

• WVG: [21; 12, 9, 4, 4, 1, 1, 1]

• AXps:
1 2
1 3 4 5
1 3 4 6
1 3 4 7

• Deegan-Packel scores: x0.312, 0.125, 0.188, 0.188, 0.062, 0.062, 0.062y
• Banzhaf scores (normalized): x0.481, 0.309, 0.086, 0.086, 0.012, 0.012, 0.012y
• Shapley-Shubik scores: x0.574, 0.257, 0.074, 0.074, 0.007, 0.007, 0.007y

• Different relative orders of voter importance... which ones seem more realistic?
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Outline – Part 7

Exact Shapley Values for XAI

Myth #03: Shapley Values for XAI

Corrected SHAP Scores

Detour: Power Indices

Feature Importance Scores



From power indices to feature importance scores

• A Feature Importance Score is a measure of feature importance in XAI, parameterizable on
an explanation problem and a chosen characteristic function

• Explanation problem: (M, (v, q))
• Define characteristic function using explanation problem (more next slide)

• Obs: Can adapt (generalized) power indices as templates for feature importance scores
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Some examples

• More notation:
∆i(S; E , υ) = υ(S; E)´ υ(Sztiu; E)

• Some templates:
• Shapley-Shubik:

TScS(i; E , υ) :=
ÿ

SPtT ĎF | iPT u

(
∆i(S; E , υ)
|F | ˆ

(
|F|´1
|S|´1

))
• Banzhaf:

TScB(i; E , υ) :=
ÿ

SPtT ĎF | iPT u

(
∆i(S; E , υ)

2|F|´1

)
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A concrete example

• AXps: tt1, 3, 4u, t2, 3, 4uu

• Feature attribution:

• SS: x0.083, 0.083, 0.417, 0.417y
• B (norm.): x0.125, 0.125, 0.375, 0.375y
• J (norm.): x0.111, 0.111, 0.389, 0.389y
• HP: x0.167, 0.167, 0.333, 0.333y
• DP: x0.167, 0.167, 0.333, 0.333y

x1

x2

0 x3

0 x4

0 1
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10 11
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Part 8

Conclusions & Research Directions



Outline – Part 8

Some Words of Concern

Conclusions & Research Directions



Can heuristic XAI’s myths be stopped?

LIME on 2023/05/31:

139 / 144



Can heuristic XAI’s myths be stopped?

LIME on 2024/07/02:

139 / 144



Can heuristic XAI’s myths be stopped?

SHAP on 2023/05/31:

139 / 144



Can heuristic XAI’s myths be stopped?

SHAP on 2024/07/02:

139 / 144



What’s the bottom line?

• (Heuristic) XAI research experiences a persistent “Don’t Look Up” moment...

BTW, there are a multitude
of proposed uses of
LIME/SHAP in medicine... "
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Some unsettling works...

• For DTs:
• One AXp in polynomial-time [IIM20, HIIM21, IIM22]

• All CXps in polynomial-time [HIIM21, IIM22]
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Outline – Part 8

Some Words of Concern

Conclusions & Research Directions



Conclusions

• Brief overview of formal XAI & its recent progress:
• Abductive & contrastive explanations
• Skimmed through their computation in practice
• Duality & enumeration
• Other explainability queries – feature relevancy

• Showed that formal XAI disproves some myths of (heuristic) XAI:
• Explainability using intrinsic interpretability is a myth
• The rigor of model-agnostic explanations is a myth
• The rigor of SHAP scores as a measure of relative feature importance is a myth

• Established tight connection between feature selection and feature attribution in XAI
• Symbolic XAI aggregates many fields of research:
machine learning, formal methods, automated reasoning, optimization, computational
social choice (& game theory), etc.
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Research directions

• Scalabilitty, scalability, and scalability
• Probabilitistic explanations
• Distance-restricted explanations
• Rigorous feature attribution
• Certified XAI tools
• ... And trying to curb the massive momentum of (heuristic) XAI myths!
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Q & A

Acknowledgment: joint work with X. Huang, Y. Izza, O. Létoffé, A. Ignatiev, N. Narodytska, M.
Cooper, N. Asher, A. Morgado, J. Planes, et al.
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