EINDHOVEN
I e UNIVERSITY OF
TECHNOLOGY

Accelerated Verification - part 1

Anton Wijs
VTSA Summer school 2024 / 8 & 9 July

Software Engineering & Technology TU/e

Anton Wijs

e Associate Professor on Parallel Software
Development (Software Engineering &
Technology)

e Topics: system verification,
model checking, annotation checking,
parallel programming (CPUs, GPUs)

o A.JWijs@tue.nl

TU/e

mailto:A.J.Wijs@tue.nl

It’s great to be back!

Building a Software Model-Checker

Verification Technology
.

Javier Esparza

.
.
S
.'-
)

Protocol Validation with mCRL -.
Wan Fokkink

Probabilistic Model Checking v w&aﬁons

Marta Kwiatkowska

Fundamentals of Software Model Checking
Markus Miiller-Olm Vg e VTSA summer school 2010 in Luxembourg

e Attended as a post-doc researcher

Modeling and Analysis of Timed Systams

Wang Yi

TU/e

Schedule Accelerated Verification

e 8 July 2024: 14:00 — 17:30

e Introduction to GPU computing (with applications to formal verification)
e 9 July 2024: 09:00 — 12:30

e Optimised GPU computing (with applications to formal verification)

TU/e

Schedule 8 July 2024

e 14:00 - 14:30 Introduction to GPU Computing / High-level intro to CUDA Programming

e 14:30 - 15:00 1st Hands-on Session

e 15:00 — 15:15 Solution to first Hands-on Session

e 15:15-15:45 PRAM model and a linear parallel bisimulation algorithm

e 15:45 —-16:15 CUDA Programming part 2, with 2nd Hands-on Session + solution

e 16:15 - 16:45 3rd Hands-on Session + solution

e 16:45 - 17:15 A parallel algorithm for Strongly Connected Component detection in graphs
e 17:15-17:30 CUDA Program execution

TU/e

David B. Kirk
Wen-mei W. Hwu

We will cover approx. first
five chapters

)

THIéi.? EDrr}}ON
{Programming Massively
Parallel Processors -

A Hands-on Approach
VA AN

/

NVIDIA

TU/e

Introduction to GPU Computing

What is a GPU?

e Graphics Processing Unit —

The computer chip on a graphics card

e General Purpose GPU (GPGPU)

TU/e

Graphics in 1980

TU/e

10

Graphics in 2000

ArhCoate Ares ! I'IZ!"
Br Dlaakoe obe Brei's

Brp: w3k m

Q)

tehet
Bar M TRIMIMG € plainagu

You fragped Ares
place with 28

f_f'ﬁ,‘ es

1";11
. . . - A “'
“.

I.' ST e v
Roc ket Lauvmeher ;

{15

TU/e

S
O
c
7,
=

Graph

The impact of Graphics Processors (GPUs)

* Numerical simulation, media processing, medical imaging,
machine learning, ...

« Communications of the ACM 59(9):14-16 (sep.’16)
« “GPUs are a gateway to the future of computing”
« Example: deep learning
« 2011-12: GPUs dramatically increase performance

50X BOOST IN DEEP LEARNING

Leiserson et al. There’s plenty of room at IN 3 YEARS

the top: What will drive computer : D oxtiine
performance after Moore’s law? Science g -
368(6495), 2020: g

Major computational advances ‘.§ - T
increasingly need to come from " w xo I

parallelism oo HE_EN BN -

gt e

Pty e
O T PR AMEND L2 G JAC00. DHGE niom Moy Bt .00

LI~ 7 A —

Compute performance

(According to Nvidia)

13

Theoretical GFLOP/=

5750
5500
5250
5000
4750
4500
4250
4000
3750
3500
3250
3000
2750
2500
2250
2000
1750
1500
1250
1000

750

500

250

0 ratim 4 @

Apr-01 Sep-02 Jan-04 May-05 Oct-06 FebOB Jul 09

NVIDIA GPU Single Precision
et/ |D1A GPU Double Freciston
wtwsintel CFU Double Frecizion
wmben|nte| CPU Single Precizion

Tesla 1060
Harpertowa

Iessia NI

cela C20An

e K4

cela K2R

luy lirldas

Wesunere

Nov-10 Apr-12 Aug-13 Dec-14

TU/e

GPUs vs supercomputers ?
100 pfleps

- fastest supercomputer in the world
10plicps 4 —a— nr. 500 supercompuier in the workd
-m— 1 single Graphics Procassing Unit

1 pllops
100 Mops °
10 Mops
1 tflops
100 gllops
10 qllops
1 gfiops
1oomﬂws LN B A BN D A BERAEL A B N BNE B BN A N DR DR D AN DN DN AN BNN BERARE NN BN BN BN D AR AN DR AR BN AN BN BN AR NN BN BN B e)
[32] £ I~ e 2] - oo n ™~ o : ™M (‘o] I~ (=1]
< & < > 8 = o < (= - o — — -~
s 2 2 2 & R R &8 & & ®m B & @7

14 TU/e

Oak Ridge’s Frontier (2022)

* Number 1 in top500 list (2024): 1.5
eflops peak (1518 flops), 22.8 MW
power

9,472 AMD Epyc 7713 “Trento”
processors x 64 cores =
606,208 cores

37,888 Instinct MI250X GPUs x 220
cores = 8,335,360 cores

15

TU/e

16

CPU vs GPU Hardware

e Different goals produce different designs

e GPU assumes work load is highly parallel
e CPU must be good at everything, parallel or not

e CPU: minimize latency experienced by 1 thread
e Big on-chip caches
e Sophisticated control logic

e GPU: maximize throughput of all threads

e Multithreading can hide latency, so no big caches
e Control logic

* Much simpler
e Less: share control logic across many threads

Control

17

It's all about the memory

e

TU/e

Many-core architectures

18

From Wikipedia: “A many-core processor is a multi-
core processor in which the number of cores is large
enough that traditional multi-processor techniques
are no longer efficient — largely because of issues
with congestion in supplying instructions and data to
the many processors.”

TU/e

Integration into host system

e PCl-e 3.0 achieves about 16 GB/s

e Comparison: GPU device memory bandwidth is 320 GB/s for
GTX1080

15 TU/e

20

Why GPUs?

e Performance
e Large scale parallelism
e Power Efficiency

e Use transistors more efficiently

e #1 in green 500 uses NVIDIA Grace Hopper Superchip 72C (June 2024)
e Price (GPUs)

e Huge market

e Mass production, economy of scale

e Gamers (and Al engineers / users) pay for our HPC needs!

TU/e

When to use GPU Computing?

e When:
e Thousands or even millions of elements that can be processed in parallel

e Very efficient for algorithms that:
e have high arithmetic intensity (lots of computations per element)
e have regular data access patterns
e do not have a lot of data dependencies between elements
e do the same set of instructions for all elements

21

TU/e

A high-level intro to
CUDA Programming
(Part 1)

23

CUDA Programming Model

Before we start:

* I’'m going to explain the CUDA Programming model
e I'll try to avoid talking about the hardware as much as possible

e For the moment, make no assumptions about the backend or how the program is executed by
the hardware

e | will be using the term ‘thread’ a lot, this stands for ‘thread of execution’ and should be seen
as a parallel programming concept. Do not compare them to CPU threads.

TU/e

CUDA Programming Model

24

e The CUDA programming model separates a program into a host (CPU) and a device (GPU) part.

e The host part: allocates memory and transfers data between host and device memory, and
starts GPU functions

* The device part consists of functions that will execute on the GPU, which are called kernels
e Kernels are executed by huge amounts of threads at the same time

e The data-parallel workload is divided among these threads

e The CUDA programming model allows you to code for each thread individually

TU/e

Data management

e The GPU is located on a separate device

e The host program manages the allocation and freeing
of GPU memory
C:
+ cudaMalloc()
* cudaFree()
Python:
* mem_alloc()
e Host program also copies data between different
physical memories
C:
+ cudaMemcpy()
Python:
* memcpy_htod() or memcpy_dtoh()

25

CPU
Host
memory Host
T <— PCI Express link
GPU Device Device
memory

TU/e

Thread Hierarchy

e Kernels are executed in parallel by possibly millions of threads, so it makes sense to try to
organize them in some manner

Gri((jo’ y i Y Thread block
SRR AR REEY: i T A | 6ad
(0, 1) (1, 1) (2, 1) g i i
L itie [eaEieleeiitts 010 (40 | @10
Typical block sizes: 256, 512, 1024 i i i

2% TU/e

Threads

¢ In the CUDA programming model a thread is the most fine-grained entity that performs

computations

e Threads direct themselves to different parts of memory using their built-in variables
threadIdx.x, vy, =z (threadindex within the thread block)

* Bxample: = o (1=0; 1i<N; i++)

c[i] = ali] + bIli];
}

Create a single thread block of N threads:

i = threadIdx.x;
c[i] = a[i] + b[i];

o Effectively the'Toop is ‘unrolled” and spread across N threads

27

TU/e

Threads

¢ In the CUDA programming model a thread is the most fine-grained entity that performs
computations

e Threads direct themselves to different parts of memory using their built-in variables
threadIdx.x, vy, =z (threadindex within the thread block)

* Bampler g (120; i<N; it4)
cli] = afli] + b[i];
}
Create a single thread block of N threads: Single Instruction

Multiple Data (SIMD)
principle

i = threadIdx.x;
c[i] = a[i] + b[i];

o Effectively the'Toop is ‘unrolled” and spread across N threads

27

TU/e

Thread blocks

28

e Threads are grouped in thread blocks, allowing you to work on problems larger than the
maximum thread block size

* Thread blocks are also numbered, using the built-in variables blockIdx. x, y containing the
index of each block within the grid.

e Total number of threads created is always a multiple of the thread block size, possibly not
exactly equal to the problem size

® Other built-in variables are used to describe the thread block dimensions blockDim. x, vy, z

and grid dimensions gridDim. x, y

TU/e

Mapping to hardware

29

TU/e

Mapping to hardware

Thread

Block

Grid

29

CUDA

?

R

B

Graphics Card

.

1

i

1]

0000
nood

ooan
oood

0000
nooo

Processor

Multiprocessor

GPU

TU/e

Starting a kernel

e The host program sets the number of threads and thread blocks when it launches the kernel

//create variables to hold grid and thread block dimensions
dim3 threads(x, vy, 2z)
dim3 grid(x, V)

//launch the kernel
vector add<<<grid, threads>>>(c, a, b);

//wait for the kernel to complete
cudaDeviceSynchronize () ;

L —————— T

3 TU/e

CUDA function declarations

31

e global defines akernel function

e Each® " consists of two underscore characters
e Akernel function must return void

. device and host can be used together

e host _ isoptionalif used alone

Executed on | Only callable from
the: the:
__device float DeviceFunc () device device
__global void KernelFunc() device host
__host float HostFunc() host host

TU/e

Setup hands-on sessions

e Go to https://jupyter.snellius.surf.nl/jhssrf012

e Log in with username / password given by SURF (SURFcua) ',A:

e |f password expired, request new password (Forgot) J U pyte r |

e You will log into JupyterHub \ ,-
-

. Jupyterhu Logot Corted Pena
Files Wnning Clusiay

Sl tamz in perinen actians an 1mam Ugkos MNow- O

7 «) JHS notebooks rome s Lost Modied Fe ko
SECTOVIR A0

9 minulRa 8o

. TU/e

https://jupyter.snellius.surf.nl/jhssrf012

Setup hands-on session

* You get to play with 1/8th of an NVIDIA A100 (via Multi-Instance GPU (MIG))
e 5 GB global memory
e How to check this?
e On the top right of screen, click on New, select Terminal
e This opens a terminal, and will be used to compile our GPU programs

¢ |n the terminal, run nvidia-smi

33

Setup hands-on session

upy.er

scur03dligen9:/gpfs/homel /scurtl4ls nv.dia-sai
Wed Tul T 17434411 2024

Dr.ver Version: 5{5.23.0¢% CUDA Version: 12.3

Persistence M 3 Disp.A Volatile Uncorx. RCC
Pexf Pwr:Usage/Cap Memory-Usage GPU-Util Computs M.
| | MIZ M.

[-------.------—-------------—------.---o----------.-----------o-----------------.----
0 HNVIDIA ALOO-ONM4-400D L 1Y | 00000000:31:00.0 022 | ofe
«8C " 408 / 40w BIMED / 4096iMiD N/A Default
Ena>led

| GPU G1 CI Memory-Usage Shared

| 0 ID Dev BAR]-Usage 3 Unc| CE ENC DEC OFA JM

| ECC|

| o -
12M43 / 4864MiB | 14 Al 1
OMED / 8191MiB

| Processes:
| GPU GI CI Type Process name GPU Memory
| m ™m lsage

|

| No rurning processes found

acur0d4digendi/gpla/home /acux0d4d9 .

First hands-on session

35

e Go back to the folders, open the folder 1-vector-add

2Acerds Ao
ZAPrirés aon
Z1mMrires 300
Z1mrires 3on

0 Mrenes apn

e timer.h, timer. cc: can beignored, included to measure runtimes
e Makefile: can beignored, used to compile our program
® vector add.cu: the CUDA file we will work with, open it and inspect

e Set Language to C++ for syntax highlighting

‘2R
2. kR
227kR

448 kKB

TU/e

First hands-on session

e Make sure you understand everything in the code, and complete the exercise!
¢ Hints:
e Look at how the kernel is launched in the host program
e threadIdx.x isthe thread index within the thread block
e DblockIdx.x isthe blockindex within the grid
e DblockDim.x isthe dimension of the thread block (number of threads per block)

36

TU/e

Hint

37

thread block O

thread block 1

thread block 2K

(il LLTde] Jalae]:

>

lockldx.x
threadldx.x

TU/e

Solution

e CPU implementation:
for (i=0; 1i<N; 1i++) {

c[1] = ali]l + bli];

e GPU implementation:

Create a N threads using multiple thread blocks:

Single Instruction

i = blockIdx.x * blockDim.x + threadIdx.x; Multiple Data (S||\/|D)
if (i<N) | principle

cli] = ali] + b[il];
}

® TU/e

But what if you have more data elements than threads?
e Use a grid-stride loop:
1 = blockIdx.x * blockDim.x + threadIdx.x;

for (i=0; i<N; i += blockDim.x * gridDim.x) {
cl[i] = al[i] + b[i];

e Look at how the kernel is launched in the host program : :
e threadIdx.x isthe threadindex within the thread block Smg_le Instruction
e blockIdx.x isthe blockindex within the grid Multiple Data (SIMD)

principle

e DblockDim.x isthe dimension of the thread block

e gridDim.x isthe dimension of the grid (number of blocks)

39 TFlJ/é!

The PRAM model and a
parallel linear bisimulation algorithm

Joint work with Lars van den Haak, Jan Martens, Jan-Friso
Groote & Pieter Hijma (TACAS 2015, FACS 2021)

" TU/e

Computational model — CRCW PRAM

e The Parallel Random Access Machine (PRAM) is an extension of the RAM

e PRAM
e Unbounded collection of processors Py, Py, P5, ...
e Unbounded collection of common memory cells the processors can access
e Each processor P; has access to its index i

® Processors run the same program synchronously (simplification of CUDA warp-based
execution, addressed tomorrow)

e A PRAM program comes with a function P : N — N defining how many processes are
started, based on the size of the input

" TU/e

Computational model — memory contention

e Handling conflicts in read and writes of the common memory
e Exclusive Read Exclusive Write (EREW PRAM)
e Concurrent Read Exclusive Write (CREW PRAM)
e Concurrent Read Concurrent Write (CRCW PRAM)
e In case of concurrent writes to the same memory cell further cases are distinguished:
e Priority CRCW: The lowest indexed processor will write
e Arbitrary CRCW: An arbitrary processor will complete the write
e Common CRCW: Write will only succeed if all processors write the same value
e Qur proposed algorithm works without changes on Priority and Arbitrary CRCW PRAM

42

TU/e

Computational model — Computational Complexity

e The time complexity of a PRAM is given by the number of steps all the processors take
e Optimal
e PRAM is called optimal w.r.t. a sequential algorithm if the total work done is equal. If T'is

the parallel run time and P is the number of processors, then it is optimal with an
algorithm running in S'stepsif P - T € O(S) [Balcazar et al. 1992]

e Deciding bisimilarity is proven to be &-complete. It is widely believed no PRAM algorithm
running in polylogarithmic time exists for -complete problems

“ TU/e

Labelled Transition System (LTS)

e LTS
e (Finite) set of states S (n states)
e (Finite) set of actions Act
e Transition relation 7' : S X Act X S (m transitions)

coin
* S —> 8

e Some terminology

e We say that a state s reaches a state 7 with action a € Act iff s 5t

e A state s reaches a set of states U C § with a iff there exists a state r € U such that s reaches
t with a

e A set of states V'is stable under a set of states U iff for all actions a either all states in V reach
U with a, or none of them do

» TU/e

45

Strong bisimulation

e Two states s and t are (strongly) bisimilar iff
there exists a relation R : S X S that is

symmetric and s R t implies that for all s 5
there exists a state ¢’ such thatt = 'and s’ R ¢’

e We are interested in the largest bisimulation
relation, which we refer to as <

46

Strong bisimulation

e Two states s and t are (strongly) bisimilar iff
there exists a relation R : S X S that is

symmetric and s R t implies that for all s 5
there exists a state ¢’ such thatt = 'and s’ R ¢’

e We are interested in the largest bisimulation
relation, which we refer to as <

47

A comment about transition labels

e For LTSs with only a single transition label, the problem of bisimulation is also known as the
relational coarsest partition problem (RCPP)

e Fact: RCPP is not significantly harder than finding the largest bisimulation for LTSs with
multiple transition labels

e For the sake of clarity, however, we will discuss algorithms in a setting without transition
labels (equivalent to only one transition label)

TU/e

Partition refinement

o A partition 7 of a set § is a disjoint cover of §, i.e, # = {By, By, ..., B, }, and every pair of

blocks B;, B € mis disjoint: B, N B = @& and all blocks together cover S: U B,=S§

B:en

e A partition 7’ is a refinement of 7z if for all blocks B € 7’ there isa B’ € m such that B C B’

e Partition-based bisimilarity computation
e Input: An LTS M = (S, Act, —) and an initial partitioning 7,
e Output: A partition 7 of S that defines <: Vs,r€S.s ot < dBerx.s,t €B

. TU/e

Partition-based bisimilarity computation

e |dea

e Create a partition of states (sets of states, or blocks) [
e A partition 7z is stable under a set of states U iff @

each block B € ris stable under U

e A partition 7 is stable iff it is stable under all its
own blocks B €

e |teratively split blocks in smaller blocks (refine x) @
until bisimulation is achieved (s < tiff s, € B)

e Fact: Stability is inherited under refinement

w0 TU/e

The sequential Kanellakis-Smolka algorithm (©(mn))

~N o g s~ O =

O oo

10
11
12
13

50

T 1= To;
Unstable := my;
while Unstable # () do
foreach B € Unstable do
Delete(B, Unstable);
C:={s|s—tandte B},
foreach B’ € 7 for which) # B'N C # B’ do

// Split B’ into B'NC and B'\ C
Delete(B, r);
m=nU{B'NC,B"\ C};
Unstable := Unstable U {B' N C,B"\ C};
end
end

end

Algorithm 1: Sequential algorithm based on Kanellakis & Smolka.

Unstable is set of not necessarily stable blocks.

=

Bo |

Select block By,

TU/e

The sequential Kanellakis-Smolka algorithm (©(mn))

~N o g s~ O =

O oo

10
11
12
13

51

T = mo;

Unstable := my;

while Unstable # () do

foreach B € Unstable do

Delete(B, Unstable);

C:={s|s—tandte B},

foreach B’ € 7 for which) # B'N C # B’ do
// Split B’ into B'NC and B'\ C
Delete(B, r);
m=nU{B'NC,B"\ C};
Unstable := Unstable U {B' N C,B"\ C};

end

end

end

Algorithm 1: Sequential algorithm based on Kanellakis & Smolka.

Unstable is set of not necessarily stable blocks.

=

Bo |

Calculate the reverse

image of By: C

TU/e

The sequential Kanellakis-Smolka algorithm (©(mn))

~N o g s~ O =

O oo

10
11
12
13

52

T = mo;

Unstable := my;

while Unstable # () do

foreach B € Unstable do

Delete(B, Unstable);

C:={s|s—tandte B},

foreach B’ € 7 for which) # B'N C # B’ do
// Split B’ into B'NC and B'\ C
Delete(B, r);
m=nU{B'NC,B"\ C};
Unstable := Unstable U {B' N C,B"\ C};

end

end

end

Algorithm 1: Sequential algorithm based on Kanellakis & Smolka.

Unstable is set of not necessarily stable blocks.

e,
B

TU/e

Parallel Algorithm (without action labels)

e \We use an Arbitrary Concurrent Read Concurrent Write PRAM
e Each processor runs program in lock-step, has shared memory
e \Write data races lead to random processor completing write
e Idea:
e Perform steps of the sequential algorithm in ©(1) time on max(n, m) processors
¢ This is not so straightforward
e We perform at most @(n) iterations

e Total complexity of O(n) time

53 TU/e

Data structures in common memaory

54

e N : N the number of states of the input LTS
e M : N the number of transitions of the input LTS
* The input, a list of transitions: for every transition numbered i € {0,..., M }:
e Asource s € § and target ¢ € Sindicating it is the transition s — t.
o5 =3
ol =1
e current_splitter : Ly U { L } the current block that is used for splitting
e For each state s € §:
e mark, : B, the mark whether s is able to reach the current block
e block : Lg, the block s is a member of. Initially, block, := 0
* For each block label b € Ly:

e next_numbery, : Lg, the leader of the new block when a split is performed

» stable, : B, indicating whether the block is stable. Initially, stable = false and for all blocks b € Lg, b # 0, stabley, = true

TU/e

Parallel Algorithm (without action labels)

¢ Block labels & leaders

e Each state s has a block label (blocky)

e Same block label = Same block

e Labels are states themselves. (block, = 5" € S)

e The state that is the label of a block is called the block leader
e Mark states

e Each state has a mark (mark;) indicating if it reaches the
splitter

¢ Splitting blocks
¢ Block leader remains in own block

e For each block, a new leader is elected from states that split off

55

TU/e

New leader election

e current_splitter = B

eC:={s|s—>tAt EB}

o The block B, with label s, will split in two blocks
according to C

o The new block C N B, will elect a new leader

e A concurrent write in a variable next_numbers0

will choose a state as new leader

56

[

| 1+—

Parallel Algorithm (without action labels)

1. Reset variables and choose splitter

1 if i < N then

2 current_splitter .= 1 ;
3 mark; := false;

4 if unstable; then

5 current _splitter := i,
6 end
7 end

2. Mark states that reach the splitter

7 if i < M and blocktarger; = current_splitter then
8 ‘ marksoyrce; 1= true;
9 end

57

3. Perform splits based on marks

& se

10 if i < N and current _splitter # | then

11
12
13

14
15
16
17
18 end

t unstable

unstablecyrent._ splitter +— false;
if mark; # markpjock, then
new_leaderpjock; := i

unstablepjock;, = true;

block; := new_leaderpjock;;

unstablepjock; = true;
end

Repeat until fix-point is reached

SISO

C@

Step 1: select

current_splitter := BS4

TU/e

Parallel Algorithm (without action labels)

1. Reset variables and choose splitter

1 if i < N then

2 current_splitter .= 1 ;
3 mark; := false;

4 if unstable; then

5 current _splitter := i,
6 end
7 end

2. Mark states that reach the splitter

7 if i < M and blocktarger; = current_splitter then
8 ‘ marksoyrce; 1= true;
9 end

58

3. Perform splits based on marks

& se

10 if i < N and current _splitter # | then

11
12
13

14
15
16
17
18 end

t unstable

unsta bIecurrem.‘,split“t.‘er ;= false;
if mark; # markpjock, then
new_leaderpjock; := i

unstablepjock;, = true;

block; := new_leaderpjock;;

unstablepjock; = true;
end

Repeat until fix-point is reached

DJOI0)
-

\ \
() (=)

Step
S1> 8y

2: mark states

TU/e

Parallel Algorithm (without action labels)

1. Reset variables and choose splitter

1 if i < N then

2 currint,s;}lifter =L 3. Perform splits based on marks e . e
3 mark; := false;

s | if unstable; then & set unstable

5 current_splitter := i; 10 if i < N and current _splitter # | then

6

7

end 11 unstablecyrent._ splitter +— false;
end 12 if mark; # markpjock, then
13 new_leaderpjock; := i
2. Mark states that reach the splitter ' unstablepiock; = true;
15 block; := new_leaderpjock;;
7 if i < M and blocktarger; = current_splitter then 16 UnStableb/ock,- = true;
8 ‘ marksource; := true; 17 end
9 end
18 end . .
Step 3: split B into
Repeat until fix-point is reached
P P B17 B2

59 TU/e

Putting labels back in LTSs

e Translating LTSs to a transition system without labels results in a LTS with @(m) states. In the

worse case, m = n’, also the steps our algorithm has to take can grow quadratically
We can do better!

¢ Algorithm with labels
1. Preprocess the states, such that states are grouped on outgoing actions

2. For every state s, keep track of a mark, boolean for every outgoing action

3. Let the transitions compare these marks with the leading state

e Has O(n + | Act|) time complexity

60 TU/e

Experimental results

Benchmark name |ACt| ‘B/OCkSl It Tpre Ta/g #It/n #It/B/OCkS Tpar_BCRp/n Ta/g/#lt Tpar-BCRP Tir Twss Twms
Vasy_0_1 2 9 16 | 0.50 0.37 0.06 1.78 0.003 0.023 0.87 2.29 0.49 0.45
Cwi_1.2 26 1,132 2,786 | 0.63 56.5 1.43 2.46 0.029 0.020 57.1 17 18.8 21.8
Vasy_ 1.4 6 28 45 | 0.56 1.01 0.04 1.61 0.001 0.022 1.58 4.78 1.68 0.62
Cwi_3_14 2 62 122 | 0.63 2.68 0.03 1.97 0.001 0.022 3.30 60 3.80 3.72
Vasy 5.9 31 145 193 | 0.84 4.22 0.04 1.33 0.001 0.022 5.06 134 35.3 3.45
Vasy_8_24 11 416 664 | 0.70 13.9 0.07 1.59 0.002 0.021 15 277 315 3.03
Vasy_8_38 81 219 319 | 1.12 6.64 0.04 1.46 0.001 0.021 7.76 127 35.1 5.94
Vasy_10_56 12 2,112 3,970 | 0.73 82.0 0.37 1.88 0.008 0.021 82.7 860 40.9 4.6(0.2)
Vasy_18_73 17 4,087 6,882 | 1.01 142 0.37 1.68 0.008 0.021 143 1,354 211 21.7
Vasy_25_25 25,216 25,217 25,218 159 519 1.00 1.00 0.027 0.021 678 21,960 t.o. 416
Vasy_40_60 3 40,006 87,823 | 0.87 1,810 2.20 2.20 0.045 0.021 1,811 17,710 1,290 1,230
Vasy_52_318 17 8,142 15,985 | 2.52 338 0.31 1.96 0.007 0.021 340 11,855 368 152(20)
Vasy_65_2621 72 65,536 98,730 | 12.2 | 10,050 1.51 1.51 0.154 0.102 10,060 t.o. 27,000 1,230
Vasy_66_1302 81 66,929 91,120 | 6.70 5,745 1.36 1.36 0.086 0.063 5,752 480,600 20,450 240(20)
Vasy_69_520 135 69,754 | 113,246 | 4.13 3,780 1.62 1.62 0.054 0.033 3,780 94,800 16,090 35.4
Vasy_83_325 211 83,436 | 148,012 | 4.41 3,093 1.77 1.77 0.037 0.021 3,097 57,190 21,500 5,880
Vasy_116_368 21 | 116,456 | 210,537 | 2.50 5,900 1.81 1.81 0.051 0.028 5,900 80,900 6,360 2,930
Cwi_142_925 7 3,410 5,118 | 4.85 238 0.04 1.50 0.002 0.047 243 3,363 220(30) 140(20)
Vasy_157_297 235 4,289 9,682 | 4.58 201 0.06 2.26 0.001 0.021 206 1,058 1,240 579
Vasy_164_1619 37 1,136 1,630 | 8.34 125 0.01 1.43 0.001 0.077 134 8,173 470(30) 46.8
Vasy_166_651 211 83,436 | 145,029 | 6.13 5,710 0.87 1.74 0.034 0.039 5,720 80,210 29,660 9,560
Cwi_214_684 5 77,292 | 149,198 | 3.58 6,948 0.70 1.93 0.032 0.047 6,952 19,250 440(30) 450(50)
Cwi_371.641 61 33,994 85,858 | 4.72 4,050 0.23 2.53 0.011 0.047 4,050 26,940 6,970 1,548
Vasy_386-1171 73 113 199 | 7.38 14.0 0.00 1.76 0.000 0.070 21 334 30.6 34.8
Cwi_566-3984 11 15,518 23,774 | 16.0 3,707 0.04 1.53 0.007 0.156 3,723 98,200 6,700 | 2,200(200)
Vasy_574_13561 141 3,577 5,860 | 71.5 3,770 0.01 1.64 0.007 0.643 3,841 144,810 11,700 1,853
Vasy_720-390 49 3,292 3,782 | 3.97 143 0.01 1.15 0.0002 0.038 147 2,454 1,633 183
Vasy_1112_5290 23 265 365 | 24.0 99.3 | 0.0003 1.38 0.0001 0.272 123 4,570 293 36.8
Cwi_2165_8723 26 31,906 66,132 | 37.0 | 23,660 0.03 2.07 0.011 0.358 23,700 140,170 9,700 1,965
Cwi_2416_17605 15 95,610 | 152,099 | 64.1 | 96,400 0.06 1.59 0.040 0.634 96,500 || 257,200 | 16,300(1100) 15,300
Vasy_6020.19353 511 7,168 12,262 221 | 11,690 0.002 1.71 0.002 0.954 11,910 107,900 | 34,000(2000) 19,230
61 Vasy_6120_11031 125 5,199 10,014 | 74.0 6,763 0.002 1.93 0.001 0.675 6,837 55,750 7,010 1,280
Vasy_8082_42933 211 408 660 281 1,149 | 0.0001 1.62 0.0002 1.739 1,429 17,272 5,530 2,030

W

Branching bisimulation

e |[dea can be extended to address branching bisimulation

e Branching bisimulation
e Given an LTS M = (S, Act, —), arelation R : S X S is a branching bisimulation relation iff

it is symmetric and for all s, # € S with s R 7and for alla € Act U {7} with s 5 §’, we
have either

ea=7ands' Rt or

e there is a sequence f — --- — ¢’ of zero or more z-transitions such that s R ¢, ' = t”
ands’ R t”

¢ However, computation requires transitive closure of z-transitions

e Calculate at pre-processing in O(n) time using O(n?) processors
e Fundamental problem: the transitive closure bottleneck [Kao & Klein 1993]

62 TU/e

CUDA Programming
Part 2

Second hands-on session

e Go to folder 2-reduction, look at the source file reduction. cu
e Make sure you understand everything in the code
¢ Task:

e Implement the kernel to perform a single iteration of parallel reduction

¢ Hints:
e It is assumed that enough threads are launched such that each thread only needs to compute the sum
of two elements in the input array
* |n each iteration, an array of size n is reduced into an array of size n/2

e Each thread stores its result at a designated position in the output array

o TU/e

Hint — Parallel Summation

65

TU/e

Global synchronisation

e CUDA has no mechanism to indicate global synchronisation of all threads across the grid

e Instead, enforce synchronisation points by breaking down computation into multiple kernel
launches

Kernel l[aunch O

B —
I —

pm— —
— = — = = —

Kernel launch 1
Kernel launch 2
Kernel l[aunch 3

Kernel launch 4

66 TU/e

Barrier synchronisation

e Two forms:
e Global synchronisation: achieved between kernel launches

e Intra-block synchronisation: Contrary to global synchronisation, CUDA does provide a
mechanism to synchronise all threads in the same block
* syncthreads()

« All threads in the same block must reach the = syncthreads () before
any of them can move on

» Best used to split up computation of each block in several phases

» Tightly linked to use of (block-local) shared memory, which we will address
tomorrow afternoon

67 TU/e

Third hands-on session

e Go to folder 3-bfs, look at the source file

bfs.cu
e Make sure you understand everything in the code

e Task:
e Implement the kernel to perform a single iteration
of parallel breadth-first search (BFS)
¢ Hints:

* In BFS, a set OPEN is maintained, consisting of states
that require exploration, i.e., of which the outgoing
transitions need to be followed. Once a state is
explored, it is moved to a set CLOSED

68

1
VRN
2 3 4
/] N
5 6 7 8
/] LN\
10 11) (12

TU/e

SCC decomposition of graphs
MEC decomposition of MDP graphs

Joint work with Dragan Bosnacki and Joost-Pieter Katoen
(CAV 2014)

69 TU/e

Strongly Connected Components

e Model checking: checking liveness (something good eventually
happens)

e Metabolic networks: metabolites in SCC can be converted to
each other

20 TU/e

Strongly Connected Components

e Sequential: linear-time [Tarjan,’72], [Dijkstra & Feijen,’88]
e DFS based; hard to parallelise; next to impossible for many-core

" TU/e

Strongly Connected Components

e Sequential: linear-time [Tarjan,’72], [Dijkstra & Feijen,’88]
e DFS based; hard to parallelise; next to impossible for many-core

" TU/e

Strongly Connected Components

e Relevant for model checking, to detect potential for infinite
(undesired) behaviour

e Study for alternatives [Barnat et al./11]
e Forward-Backward BFS (with trimming) [Fleischer et al.’00]

e For many graphs best option, disappointing for model
checking problems (5x speedup)

7 TU/e

Strongly Connected Components

TU/e

Strongly Connected Components

TU/e

Strongly Connected Components

TU/e

Strongly Connected Components

76

e Green states + state 9: an SCC
e Other SCCs either completely consist of yellow or blue states

e Trimming procedure: remove trivial SCCs (states with no in- or outgoing edge)

TU/e

77

Forward / Backward BFS (with trimming)

Algorithm 1 FB with Trimming (FBT)

Require: graph G = (V, F),set J CV
Ensure: SCC decomposition of GG is given

2:

4:

6:

8:

10:

V'« TriMm(V) produces trivial SCC's
if V/ # () then
pivot < seLEcTP1voT(V’' N J)
F + rwDBFs(pivot, (V', E))
B <+ BwDBFs(pivot, (V' E))
remove SCC F N B from V'
do in parallel
FBT(((F'\ B), E), J)
FBT(((B\ F), E). J)
FBT((V'\ (BU F)), E), /)

TU/e

GPU SCC Decomposition

e Stored on GPU:
e outgoing transitions per state
* incoming transitions per state (transposed graph)
e result per state (current search region)
e Results[s] = Results[t] = s and t in same SCC

e Put pivots in search frontiers, scan transitions, put successors in
frontiers, ...

* 3 bits per integer for search frontiers, closed sets, locking, ...

78 TU/e

D ata ¢ Transitions contain state IDs, Results indicate SCCs

Start of outgoing
trans. of state /i 5 7

(offsets)

Outgoing trans. X X

Start incoming trans.

Incoming trans.

Results 0
79 TU/e

Forward/Backward BFS

Start of outgoing
trans. of state j
(offsets)

Outgoing trans.

Start incoming trans.

Incoming trans.

Results

80

Thread 2

5 7

5

8

e One kernel launch: move both frontiers one step

TU/e

Forward/Backward BFS
Thread 2

Start of outgoing
trans. of state j
(offsets)

Outgoing trans.

Start incoming trans. 3 5

Incoming trans. 0

Results 0

80

e One kernel launch: move both frontiers one step

5

8

TU/e

Forwa rd/BaCkwa rd BFS * One kernel launch: move both frontiers one step
Thread 2

Start of outgoing
trans. of state j
(offsets)

Outgoing trans. 5 8
Start incoming trans. 3 5
Incoming trans. 0 3

Results 0
80 TU/e

Forwa rd/BaCkwa rd BFS * One kernel launch: move both frontiers one step
Thread 2

Start of outgoing
trans. of state j
(offsets)

Outgoing trans.

Start incoming trans. 3 5
Incoming trans. 0 3

Results O
80 TU/e

Forwa rd/BaCkwa rd BFS * One kernel launch: move both frontiers one step
Thread 2

Start of outgoing
trans. of state j
(offsets)

Outgoing trans.

Start incoming trans. 3 5
Incoming trans. 0 3

Results O 0
80 TU/e

Forwa rd/BaCkwa rd BFS * One kernel launch: move both frontiers one step
Thread 2

Start of outgoing
trans. of state j
(offsets)

Outgoing trans. 5 8
Start incoming trans. 3 5
Incoming trans. 0 3

Results 0 0
80 TU/e

Forwa rd/BaCkwa rd BFS * One kernel launch: move both frontiers one step
Thread 2

Start of outgoing
trans. of state j
(offsets)

Outgoing trans.

Start incoming trans. 3 5
Incoming trans. 0 3

Results O 0
80 TU/e

Forwa rd/BaCkwa rd BFS * One kernel launch: move both frontiers one step
Thread 2

Start of outgoing
trans. of state j
(offsets)

Outgoing trans.

Start incoming trans. 3 5
Incoming trans. 0 3

Results 0 0 0
80 TU/e

Forwa rd/BaCkwa rd BFS * One kernel launch: move both frontiers one step
Thread 2

Start of outgoing
trans. of state j 5 7
(offsets)
Outgoing trans. 5 8
Start incoming trans. 3 5
Incoming trans. 0 3

Results 0 0 0
80 TU/e

Forwa rd/BaCkwa rd BFS * One kernel launch: move both frontiers one step
Thread 2

Start of outgoing
trans. of state /i 5 7

(offsets)

Outgoing trans. 5 8

Start incoming trans.

Incoming trans.

Results 0 0 0
80 TU/e

Forwa rd/BaCkwa rd BFS * One kernel launch: move both frontiers one step
Thread 2

Start of outgoing
trans. of state /i 5 7

(offsets)

Outgoing trans. 5 8

Start incoming trans.

Incoming trans.

Results 0 0 0
80 TU/e

Forwa rd/BaCkwa rd BFS * One kernel launch: move both frontiers one step
Thread 2

Start of outgoing
trans. of state /i 5 7

(offsets)

Outgoing trans. 5 8

Start incoming trans.

Incoming trans.

Results

80 TU/e

Forwa rd/BaCkwa rd BFS * One kernel launch: move both frontiers one step
Thread 2

Start of outgoing
trans. of state /i 5 7

(offsets)

Outgoing trans. 5 8

Start incoming trans.

Incoming trans.

Results

80 TU/e

Forwa rd/BaCkwa rd BFS * One kernel launch: move both frontiers one step
Thread 2

Start of outgoing
trans. of state /i 5 7

(offsets)

Outgoing trans. 5 8

Start incoming trans.

Incoming trans.

Results 0 0 0
80 TU/e

Forwa rd/BaCkwa rd BFS * One kernel launch: move both frontiers one step
Thread 2

Start of outgoing
trans. of state /i 5 7

(offsets)

Outgoing trans. 5 8

Start incoming trans.

Incoming trans.

Results

80 TU/e

Forwa rd/BaCkwa rd BFS * One kernel launch: move both frontiers one step
Thread 2

Start of outgoing
trans. of state /i 5 7

(offsets)

Outgoing trans. 5 8

Start incoming trans.

Incoming trans.

Results

80 TU/e

BFS on a GPU

Require: initial state is in search frontier

Ensure: if state ¢ is in search frontier, then the successors of 7 are added to search frontier,

and ¢ is moved to the explored set
stepsize <— 1
2: for (i < Global-Threadld;i < |V|;i < i + NrOfThreads) do
srcinfo <— offsets|i]

4: if INFRONTIER(srcinfo) then
offsets[i] < MOVETOEXPLORED(srcinfo)
6: offset1 < GETOFFSET(srcinfo)
offset2 <— GETOFFSET(offsets[i + stepsize — (i mod stepsize)])
8: for (j < offsetl; j < offset2; j < j + stepsize) do
t < transl[j]
10: if ¢ # empty then
tgtstate < GETTGTSTATE(?)
12: tgtinfo < offsets|tgtstate]
if 1sNEw(tgtinfo) then
14: offsets[tgtstate] < ADDTOFRONTIER(tgtinfo)

81

TU/e

Pivot selection

e Select for each new region new pivot
e Let threads with states in same region race
e Reuse outgoing trans as hash table
e Use atomic writes and write-lock bit
e 3 * Results[i] + inForward[i] + 2 * inBackward[i]

Outgoing trans.

Results O O

82 TU/e

Pivot selection

e Select for each new region new pivot
e Let threads with states in same region race
e Reuse outgoing trans as hash table
e Use atomic writes and write-lock bit
e 3 * Results[i] + inForward[i] + 2 * inBackward[i]

Outgoing trans.

Results O O

Example for 2 and 5: inForward[i] = true, inBackward[i] = false

82 TU/e

Pivot selection

e Select for each new region new pivot
e Let threads with states in same region race
e Reuse outgoing trans as hash table
e Use atomic writes and write-lock bit
e 3 * Results[i] + inForward[i] + 2 * inBackward[i]

Outgoing trans. 2

Results O O

Example for 2 and 5: inForward[i] = true, inBackward[i] = false

82 TU/e

Pivot selection

e Select for each new region new pivot

e Let threads with states in same region race
e Reuse outgoing trans as hash table

e Use atomic writes and write-lock bit

) ol 3 el e e 3 * Results[i] + inForward[i] + 2 * inBackward([i]
)

Outgoing trans. 2

Results O O

Example for 2 and 5: inForward[i] = true, inBackward[i] = false

82 TU/e

Pivot selection

e Select for each new region new pivot

e Let threads with states in same region race
e Reuse outgoing trans as hash table

e Use atomic writes and write-lock bit

) ol 3 el e e 3 * Results[i] + inForward[i] + 2 * inBackward([i]
)

Outgoing trans. 2

Results 2 2

Example for 2 and 5: inForward[i] = true, inBackward[i] = false

82 TU/e

Benchmark characteristics

83

Model VI (M) IEl (M) av. out max. out #SCCs
1 wlan.2500 12.6 28.1 2.23 129 12.5M
2 phil.7 11.0 98.5 8.97 14 1

3 diningcrypt.10 42.9 279.4 6.51 20 42.9M
4 test-and-set.7 514 468.5 9.12 17 4,672

5 leader.7 68.7 280.5 4.08 14 42.2M
6 phil_lss.5.10 72.9 425.6 5.84 10 1

7 coin.8.3 87.9 583.0 6.63 16 54M

8 mutual.7.13 76.2 653.7 8.58 14 1

9 zeroconf_dI.F.200.1k.6 118.6 273.5 2.31 10 118.6 M
10 firewire_d1.800.36.(0.2) 129.3 293.6 2.27 5 129.3M

TU/e

SCC decomposition results

Tarjan ——
GPU FBTO0,7 m—

100 |- — _] —

10 |-

runtime (sec.)

15-30x speedup

models

84

NVIDIA K20 GPU
5 GB global memory
13 SMs / 2,496 SPs

TU/e

Markov Decision Process (MDP)

1 _B B e MDP: model probabilistic
systems with components

¢ Non-deterministic and
probabilistic choice

Search

1-a
8 TU/e

Markov Decision Process (MDP)

1 1 _B B ¢ (Maximal) End Component
(MEC) generalises SCC

e Limiting properties that hold
with probability 1.0

e Randomised algorithms,
stochastic games, ...

e Vis ECiff (1) Vis SCC, (2) for all v
in V, exists probability
distribution staying in V

Search

Recharge

1-a
s TU/e

MEC decomposition

e [Chatterjee & Henzinger,’12]
1. Compute SCCs
2. For each SCC C, determine U with no probability distribution staying in C
3. if U not empty: Remove Attr(U N C)
4. else: C'is MEC
5. Gotostep 1

e Attr(U) contains U plus all vertices that can reach U regardless of the resolution of the non-
deterministic choice(s)

87 TU/e

MEC decomposition results

e Up to 79x speedup

e Besides SCC decomposition, other
steps are pleasantly parallel for
GPUs

88

1000

Basic MEC decomposition ———
GPU MEC dec. with FBT0,7 ———— 1

Other results

e GPU accelerated Bounded Forward / Backward BFS
e When one BFS finishes, bound other BFS to same region
e Better complexity, but limits potential for parallelism

e Informed pivot selection

¢ No noticeable improvements on the GPU

89

TU/e

90

Overview

CUDA Programming
model (API)

threads
$
warps

GPU Hardware

Think in terms of threads
Reason on program correctness

Think in terms of warps
Reason on program performance

TU/e

Overview

CUDA Programming
model (API)

threads
$
warps

GPU Hardware

Think in terms of threads
Reason on program correctness

Think in terms of warps
Reason on program performance

Tomorrow in Part 2 of Accelerated Verification!

90

TU/e

