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It’s great to be back!



Schedule Accelerated Verification

• 8 July 2024: 14:00 — 17:30 
• Introduction to GPU computing (with applications to formal verification) 

• 9 July 2024: 09:00 — 12:30 
• Optimised GPU computing (with applications to formal verification)
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Schedule 8 July 2024

• 14:00 – 14:30  Introduction to GPU Computing / High-level intro to CUDA Programming 
• 14:30 – 15:00  1st Hands-on Session 
• 15:00 – 15:15  Solution to first Hands-on Session 
• 15:15 – 15:45  PRAM model and a linear parallel bisimulation algorithm 
• 15:45 – 16:15  CUDA Programming part 2, with 2nd Hands-on Session + solution 

• 16:15 – 16:45  3rd Hands-on Session + solution 
• 16:45 – 17:15  A parallel algorithm for Strongly Connected Component detection in graphs 

• 17:15 – 17:30  CUDA Program execution
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We will cover approx. first 
five chapters
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Introduction to GPU Computing
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What is a GPU?

• Graphics Processing Unit –     

 The computer chip on a graphics card 

• General Purpose GPU (GPGPU)
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Graphics in 1980
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Graphics in 2000
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Graphics now
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The impact of Graphics Processors (GPUs)
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• Numerical simulation, media processing, medical imaging, 
machine learning, … 

• Communications of the ACM 59(9):14-16 (sep.’16) 
• “GPUs are a gateway to the future of computing” 
• Example: deep learning 

• 2011-12: GPUs dramatically increase performance

Leiserson et al. There’s plenty of room at 
the top: What will drive computer 
performance after Moore’s law? Science 
368(6495), 2020: 
Major computational advances 
increasingly need to come from 
parallelism



Compute performance

(According to Nvidia)
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GPUs vs supercomputers ?
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Oak Ridge’s Frontier (2022)

• Number 1 in top500 list (2024): 1.5 
eflops peak (1518 flops), 22.8 MW 
power 

• 9,472 AMD Epyc 7713 “Trento” 
processors x 64 cores = 
606,208 cores 

• 37,888 Instinct MI250X GPUs x 220 
cores = 8,335,360 cores
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CPU vs GPU Hardware

• Different goals produce different designs 
• GPU assumes work load is highly parallel 

• CPU must be good at everything, parallel or not 

• CPU: minimize latency experienced by 1 thread 
• Big on-chip caches 

• Sophisticated control logic 

• GPU: maximize throughput of all threads 
• Multithreading can hide latency, so no big caches 

• Control logic 
• Much simpler 

• Less: share control logic across many threads

Core
Control

Core

Core Core

Cache
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It's all about the memory
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Many-core architectures

From Wikipedia: “A many-core processor is a multi-
core processor in which the number of cores is large 
enough that traditional multi-processor techniques 
are no longer efficient — largely because of issues 
with congestion in supplying instructions and data to 
the many processors.”
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Integration into host system

• PCI-e 3.0 achieves about 16 GB/s 

• Comparison: GPU device memory bandwidth is 320 GB/s for 
GTX1080
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Why GPUs?

• Performance 
• Large scale parallelism 

• Power Efficiency 
• Use transistors more efficiently 

• #1 in green 500 uses NVIDIA Grace Hopper Superchip 72C (June 2024) 

• Price (GPUs) 
• Huge market 

• Mass production, economy of scale 

• Gamers (and AI engineers / users) pay for our HPC needs!
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When to use GPU Computing?

• When: 
•Thousands or even millions of elements that can be processed in parallel 

• Very efficient for algorithms that: 
•have high arithmetic intensity (lots of computations per element) 
•have regular data access patterns 
•do not have a lot of data dependencies between elements 
•do the same set of instructions for all elements
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A high-level intro to 
CUDA Programming 

(Part 1)
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CUDA Programming Model

Before we start: 
• I’m going to explain the CUDA Programming model 

• I’ll try to avoid talking about the hardware as much as possible 

• For the moment, make no assumptions about the backend or how the program is executed by 
the hardware 

• I will be using the term ‘thread‘ a lot, this stands for ‘thread of execution’ and should be seen 
as a parallel programming concept. Do not compare them to CPU threads. 
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CUDA Programming Model

• The CUDA programming model separates a program into a host (CPU) and a device (GPU) part.  

• The host part: allocates memory and transfers data between host and device memory, and 
starts GPU functions 

• The device part consists of functions that will execute on the GPU, which are called kernels 
• Kernels are executed by huge amounts of threads at the same time 

• The data-parallel workload is divided among these threads 

• The CUDA programming model allows you to code for each thread individually
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Data management

• The GPU is located on a separate device 

• The host program manages the allocation and freeing 
of GPU memory 

C: 
• cudaMalloc()
• cudaFree()
Python:
• mem_alloc()

• Host program also copies data between different 
physical memories 

C:
• cudaMemcpy()
Python:
• memcpy_htod() or memcpy_dtoh()

CPU
Host 

memory

Device 
memory

Host

Device

PCI Express link

GPU
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Thread Hierarchy

• Kernels are executed in parallel by possibly millions of threads, so it makes sense to try to 
organize them in some manner

Grid
(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

Thread block
(0,0,0) (1,0,0) (2,0,0)

(0,1,0) (1,1,0) (2,1,0)

Typical block sizes: 256, 512, 1024
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Threads

• In the CUDA programming model a thread is the most fine-grained entity that performs 
computations 

• Threads direct themselves to different parts of memory using their built-in variables 
threadIdx.x, y, z (thread index within the thread block) 

• Example: 

 Create a single thread block of N threads: 

• Effectively the loop is ‘unrolled’ and spread across N threads

for (i=0; i<N; i++) { 
  c[i] = a[i] + b[i]; 
}

i = threadIdx.x; 
c[i] = a[i] + b[i];
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Threads

• In the CUDA programming model a thread is the most fine-grained entity that performs 
computations 

• Threads direct themselves to different parts of memory using their built-in variables 
threadIdx.x, y, z (thread index within the thread block) 

• Example: 

 Create a single thread block of N threads: 

• Effectively the loop is ‘unrolled’ and spread across N threads

Single Instruction 
Multiple Data (SIMD) 
principle

for (i=0; i<N; i++) { 
  c[i] = a[i] + b[i]; 
}

i = threadIdx.x; 
c[i] = a[i] + b[i];
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Thread blocks

• Threads are grouped in thread blocks, allowing you to work on problems larger than the 
maximum thread block size 

• Thread blocks are also numbered, using the built-in variables blockIdx.x, y containing the 
index of each block within the grid. 

• Total number of threads created is always a multiple of the thread block size, possibly not 
exactly equal to the problem size 

• Other built-in variables are used to describe the thread block dimensions blockDim.x, y, z 

and grid dimensions gridDim.x, y
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Mapping to hardware
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Mapping to hardware
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Starting a kernel

• The host program sets the number of threads and thread blocks when it launches the kernel

//create variables to hold grid and thread block dimensions 
dim3 threads(x, y, z) 
dim3 grid(x, y) 
 
//launch the kernel 
vector_add<<<grid, threads>>>(c, a, b); 
 
//wait for the kernel to complete 
cudaDeviceSynchronize();
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CUDA function declarations

• __global__ defines a kernel function 

• Each “__” consists of two underscore characters 

• A kernel function must return void 

• __device__ and __host__ can be used together 

• __host__ is optional if used alone

hosthost__host__ float HostFunc() 
hostdevice__global__ void  KernelFunc() 

devicedevice__device__ float DeviceFunc() 

Only callable from 
the:

Executed on 
the:
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Setup hands-on sessions

• Go to https://jupyter.snellius.surf.nl/jhssrf012 

• Log in with username / password given by SURF (SURFcua) 

• If password expired, request new password (Forgot) 

• You will log into JupyterHub
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Setup hands-on session

• You get to play with 1/8th of an NVIDIA A100 (via Multi-Instance GPU (MIG)) 
• 5 GB global memory 

• How to check this? 

• On the top right of screen, click on New, select Terminal 
• This opens a terminal, and will be used to compile our GPU programs 

• In the terminal, run nvidia-smi
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Setup hands-on session
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First hands-on session

• Go back to the folders, open the folder 1-vector-add 

• timer.h, timer.cc: can be ignored, included to measure runtimes 

• Makefile: can be ignored, used to compile our program 

• vector_add.cu: the CUDA file we will work with, open it and inspect 
• Set Language to C++ for syntax highlighting
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• Make sure you understand everything in the code, and complete the exercise! 

• Hints: 
• Look at how the kernel is launched in the host program 

• threadIdx.x  is the thread index within the thread block 

• blockIdx.x   is the block index within the grid 

• blockDim.x   is the dimension of the thread block (number of threads per block)

First hands-on session
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Hint

thread block 0
0 1 2 3

thread block 1
0 1 2 3

thread block 2
0 1 2 3

blockDim.x ?

blockIdx.x
threadIdx.x
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Solution

• CPU implementation: 

• GPU implementation:

 Create a N threads using multiple thread blocks: 

Single Instruction 
Multiple Data (SIMD) 
principle

for (i=0; i<N; i++) { 
  c[i] = a[i] + b[i]; 
}

i = blockIdx.x * blockDim.x + threadIdx.x; 
if (i<N) { 
 c[i] = a[i] + b[i]; 
}
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But what if you have more data elements than threads?

• Use a grid-stride loop: 

• Look at how the kernel is launched in the host program 

• threadIdx.x  is the thread index within the thread block 

• blockIdx.x   is the block index within the grid 

• blockDim.x   is the dimension of the thread block 

• gridDim.x   is the dimension of the grid (number of blocks) 

Single Instruction 
Multiple Data (SIMD) 
principle

i = blockIdx.x * blockDim.x + threadIdx.x; 
for (i=0; i<N; i += blockDim.x * gridDim.x) { 
 c[i] = a[i] + b[i]; 
}
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The PRAM model and a 
parallel linear bisimulation algorithm 

Joint work with Lars van den Haak, Jan Martens, Jan-Friso 
Groote & Pieter Hijma (TACAS 2015, FACS 2021)

40



Computational model — CRCW PRAM

• The Parallel Random Access Machine (PRAM) is an extension of the RAM 

• PRAM  

• Unbounded collection of processors  

• Unbounded collection of common memory cells the processors can access 

• Each processor  has access to its index  

• Processors run the same program synchronously (simplification of CUDA warp-based 
execution, addressed tomorrow)  

• A PRAM program comes with a function  defining how many processes are 
started, based on the size of the input

P0, P1, P2, …

Pi i

P : ℕ → ℕ
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Computational model — memory contention

• Handling conflicts in read and writes of the common memory 

• Exclusive Read Exclusive Write (EREW PRAM) 

• Concurrent Read Exclusive Write (CREW PRAM) 

• Concurrent Read Concurrent Write (CRCW PRAM)  

• In case of concurrent writes to the same memory cell further cases are distinguished: 

• Priority CRCW: The lowest indexed processor will write 

• Arbitrary CRCW: An arbitrary processor will complete the write 

• Common CRCW: Write will only succeed if all processors write the same value  

• Our proposed algorithm works without changes on Priority and Arbitrary CRCW PRAM 
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Computational model — Computational Complexity

• The time complexity of a PRAM is given by the number of steps all the processors take 

• Optimal  
• PRAM is called optimal w.r.t. a sequential algorithm if the total work done is equal. If  is 

the parallel run time and  is the number of processors, then it is optimal with an 
algorithm running in  steps if  [Balcázar et al. 1992]  

• Deciding bisimilarity is proven to be -complete. It is widely believed no PRAM algorithm 
running in polylogarithmic time exists for -complete problems

T
P

S P ⋅ T ∈ 𝒪(S)
𝒫

𝒫
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Labelled Transition System (LTS)

• LTS 

• (Finite) set of states  (n states) 

• (Finite) set of actions  

• Transition relation  (m transitions) 

•  

• Some terminology 

• We say that a state  reaches a state  with action  iff   

• A state s reaches a set of states  with  iff there exists a state  such that  reaches 
 with  

• A set of states  is stable under a set of states  iff for all actions  either all states in  reach 
 with , or none of them do

S
Act

T : S × Act × S

s0
coin s1

s t a ∈ Act s a t
U ⊆ S a t ∈ U s

t a
V U a V

U a

Motivation

Parallel algorithm for strong bisimulation
I Used in model checking:

I Compare two systems on same behaviour.
I Reduce state space.

I Future performance: parallel algorithms using massive
# of processors.1 (e.g. GPUs)

I Previously: O(n + log n) on a PRAM with
( m
log n log log n)/O(mn log n) processors.2 3

I Now: (O(n + |Act|)) on a PRAM with max(m, n)
processors.

I Proof of Concept implementation on GPU.

s0

s1 s2

s3 s4

coin coin

co↵ee tea

1
Leiserson, C.E., et al.: There’s plenty of room at the top: what will drive computer performance after Moore’s law? Science 368(6495) (2020)

2
Lee, I., Rajasekaran, S.: A parallel algorithm for relational coarsest partition problems and its implementation. In: Dill, D.L. (ed.) CAV 1994

3
Rajasekaran, S., Lee, I.: Parallel algorithms for relational coarsest partition problems. IEEE Trans. Parallel Distrib. Syst. 9(7), 687–699 (1998)
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Strong bisimulation
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• Two states  and  are (strongly) bisimilar iff 
there exists a relation  that is 

symmetric and  implies that for all  

there exists a state  such that  and  

• We are interested in the largest bisimulation 
relation, which we refer to as 

s t
R : S × S

s R t s a s′ 
t′ t a t′ s′ R t′ 

↔

Bisimulation

Strong bisimulation
Two states are bisimilar if:

I They can make the ‘same‘
transitions.

I The target states are also
bisimilar.

Largest bisimulation relation:
bisimilarity (-)

s0

s1 s2

s3 s4

s5

s6

s7 s8

coin coin

tea co↵ee

coin

tea co↵ee

-?

6-

6-
6-



Strong bisimulation
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A comment about transition labels
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• For LTSs with only a single transition label, the problem of bisimulation is also known as the 
relational coarsest partition problem (RCPP) 

• Fact: RCPP is not significantly harder than finding the largest bisimulation for LTSs with 
multiple transition labels 

• For the sake of clarity, however, we will discuss algorithms in a setting without transition 
labels (equivalent to only one transition label)



Partition refinement

• A partition  of a set  is a disjoint cover of , i.e, , and every pair of 

blocks  is disjoint:  and all blocks together cover :   

• A partition  is a refinement of  if for all blocks  there is a  such that   

• Partition-based bisimilarity computation  

• Input: An LTS  and an initial partitioning   

• Output: A partition  of  that defines : 

π S S π = {B0, B1, …, Bn}

Bi, B′ i ∈ π Bi ∩ B′ i = ∅ S ⋃
Bi∈π

Bi = S

π′ π B ∈ π′ B′ ∈ π B ⊆ B′ 

M = (S, Act, → ) π0

π S ↔ ∀s, t ∈ S . s ↔ t ⟺ ∃B ∈ π . s, t ∈ B
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Partition-based bisimilarity computation

• Idea 
• Create a partition of states (sets of states, or blocks) 

• A partition  is stable under a set of states  iff 
each block  is stable under  

• A partition  is stable iff it is stable under all its 
own blocks  

• Iteratively split blocks in smaller blocks (refine ) 
until bisimulation is achieved (  iff )  

• Fact: Stability is inherited under refinement

π U
B ∈ π U
π
B ∈ π

π
s ↔ t s, t ∈ B

Partition-based bisimilarity computation

Idea

I Create a partition of states (sets of states, or blocks)
I A partition ⇡ is stable under a set of states U i↵ each

block B 2 ⇡ is stable under U
I A partition ⇡ is stable i↵ it is stable under all its own

blocks B 2 ⇡

I Iteratively split blocks in smaller blocks (refine ⇡) until
bisimulation is achieved (s - t i↵ s, t 2 B).

Fact

Stability is inherited under refinement

s1 s2 s3

s4 s5

B0
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The sequential Kanellakis-Smolka algorithm ( (mn))𝒪The sequential Kanellakis-Smolka algorithm (O(mn))

1 ⇡ := ⇡0;
2 Unstable := ⇡0;
3 while Unstable 6= ; do

4 foreach B 2 Unstable do

5 Delete(B ,Unstable);
6 C := {s|s �! t and t 2 B};
7 foreach B 0

2 ⇡ for which ; 6= B 0
\ C 6= B 0

do

// Split B 0 into B 0
\ C and B 0

\ C
8 Delete(B , ⇡);
9 ⇡ := ⇡ [ {B 0

\ C ,B 0
\ C};

10 Unstable := Unstable [ {B 0
\ C ,B 0

\ C};
11 end

12 end

13 end

Algorithm 1: Sequential algorithm based on Kanellakis & Smolka.
Unstable is set of not necessarily stable blocks.

s1 s2 s3

s4 s5

B0

B0

B1

Select current splitter := B0

Calculate the reverse image of B0: CSplit all blocks based on C

The sequential Kanellakis-Smolka algorithm (O(mn))

1 ⇡ := ⇡0;
2 Unstable := ⇡0;
3 while Unstable 6= ; do

4 foreach B 2 Unstable do

5 Delete(B ,Unstable);
6 C := {s|s �! t and t 2 B};
7 foreach B 0

2 ⇡ for which ; 6= B 0
\ C 6= B 0

do

// Split B 0 into B 0
\ C and B 0

\ C
8 Delete(B , ⇡);
9 ⇡ := ⇡ [ {B 0

\ C ,B 0
\ C};

10 Unstable := Unstable [ {B 0
\ C ,B 0

\ C};
11 end

12 end

13 end

Algorithm 1: Sequential algorithm based on Kanellakis & Smolka.
Unstable is set of not necessarily stable blocks.

s1 s2 s3

s4 s5

B0

B0

B1

Select current splitter := B0

Calculate the reverse image of B0: CSplit all blocks based on C

Select block B0
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The sequential Kanellakis-Smolka algorithm ( (mn))𝒪The sequential Kanellakis-Smolka algorithm (O(mn))

1 ⇡ := ⇡0;
2 Unstable := ⇡0;
3 while Unstable 6= ; do

4 foreach B 2 Unstable do

5 Delete(B ,Unstable);
6 C := {s|s �! t and t 2 B};
7 foreach B 0

2 ⇡ for which ; 6= B 0
\ C 6= B 0

do

// Split B 0 into B 0
\ C and B 0

\ C
8 Delete(B , ⇡);
9 ⇡ := ⇡ [ {B 0

\ C ,B 0
\ C};

10 Unstable := Unstable [ {B 0
\ C ,B 0

\ C};
11 end

12 end

13 end

Algorithm 1: Sequential algorithm based on Kanellakis & Smolka.
Unstable is set of not necessarily stable blocks.

s1 s2 s3

s4 s5

B0

B0

B1

Select current splitter := B0

Calculate the reverse image of B0: CSplit all blocks based on C

The sequential Kanellakis-Smolka algorithm (O(mn))

1 ⇡ := ⇡0;
2 Unstable := ⇡0;
3 while Unstable 6= ; do

4 foreach B 2 Unstable do

5 Delete(B ,Unstable);
6 C := {s|s �! t and t 2 B};
7 foreach B 0

2 ⇡ for which ; 6= B 0
\ C 6= B 0

do

// Split B 0 into B 0
\ C and B 0

\ C
8 Delete(B , ⇡);
9 ⇡ := ⇡ [ {B 0

\ C ,B 0
\ C};

10 Unstable := Unstable [ {B 0
\ C ,B 0

\ C};
11 end

12 end

13 end

Algorithm 2: Sequential algorithm based on Kanellakis & Smolka.
Unstable is set of not necessarily stable blocks.

s1 s2 s3

s4 s5

B0

B0

B1

Select current splitter := B0

Calculate the reverse image of B0: C

Split all blocks based on C

The sequential Kanellakis-Smolka algorithm (O(mn))

1 ⇡ := ⇡0;
2 Unstable := ⇡0;
3 while Unstable 6= ; do

4 foreach B 2 Unstable do

5 Delete(B ,Unstable);
6 C := {s|s �! t and t 2 B};
7 foreach B 0

2 ⇡ for which ; 6= B 0
\ C 6= B 0

do

// Split B 0 into B 0
\ C and B 0

\ C
8 Delete(B , ⇡);
9 ⇡ := ⇡ [ {B 0

\ C ,B 0
\ C};

10 Unstable := Unstable [ {B 0
\ C ,B 0

\ C};
11 end

12 end

13 end

Algorithm 1: Sequential algorithm based on Kanellakis & Smolka.
Unstable is set of not necessarily stable blocks.

s1 s2 s3

s4 s5

B0

B0

B1

Select current splitter := B0

Calculate the reverse image of B0: CSplit all blocks based on C

Calculate the reverse 
image of : B0 C
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The sequential Kanellakis-Smolka algorithm ( (mn))𝒪The sequential Kanellakis-Smolka algorithm (O(mn))

1 ⇡ := ⇡0;
2 Unstable := ⇡0;
3 while Unstable 6= ; do

4 foreach B 2 Unstable do

5 Delete(B ,Unstable);
6 C := {s|s �! t and t 2 B};
7 foreach B 0

2 ⇡ for which ; 6= B 0
\ C 6= B 0

do

// Split B 0 into B 0
\ C and B 0

\ C
8 Delete(B , ⇡);
9 ⇡ := ⇡ [ {B 0

\ C ,B 0
\ C};

10 Unstable := Unstable [ {B 0
\ C ,B 0

\ C};
11 end

12 end

13 end

Algorithm 1: Sequential algorithm based on Kanellakis & Smolka.
Unstable is set of not necessarily stable blocks.

s1 s2 s3

s4 s5

B0

B0

B1

Select current splitter := B0

Calculate the reverse image of B0: CSplit all blocks based on C

The sequential Kanellakis-Smolka algorithm (O(mn))

1 ⇡ := ⇡0;
2 Unstable := ⇡0;
3 while Unstable 6= ; do

4 foreach B 2 Unstable do

5 Delete(B ,Unstable);
6 C := {s|s �! t and t 2 B};
7 foreach B 0

2 ⇡ for which ; 6= B 0
\ C 6= B 0

do

// Split B 0 into B 0
\ C and B 0

\ C
8 Delete(B , ⇡);
9 ⇡ := ⇡ [ {B 0

\ C ,B 0
\ C};

10 Unstable := Unstable [ {B 0
\ C ,B 0

\ C};
11 end

12 end

13 end

Algorithm 2: Sequential algorithm based on Kanellakis & Smolka.
Unstable is set of not necessarily stable blocks.

s1 s2 s3

s4 s5

B0

B0

B1

Select current splitter := B0

Calculate the reverse image of B0: C

Split all blocks based on C

The sequential Kanellakis-Smolka algorithm (O(mn))

1 ⇡ := ⇡0;
2 Unstable := ⇡0;
3 while Unstable 6= ; do

4 foreach B 2 Unstable do

5 Delete(B ,Unstable);
6 C := {s|s �! t and t 2 B};
7 foreach B 0

2 ⇡ for which ; 6= B 0
\ C 6= B 0

do

// Split B 0 into B 0
\ C and B 0

\ C
8 Delete(B , ⇡);
9 ⇡ := ⇡ [ {B 0

\ C ,B 0
\ C};

10 Unstable := Unstable [ {B 0
\ C ,B 0

\ C};
11 end

12 end

13 end

Algorithm 3: Sequential algorithm based on Kanellakis & Smolka.
Unstable is set of not necessarily stable blocks.

s1 s2 s3

s4 s5

B0

B0

B1

Select current splitter := B0Calculate the reverse image of B0: C

Split all blocks based on CSplit all blocks 
based on C
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Parallel Algorithm (without action labels)

• We use an Arbitrary Concurrent Read Concurrent Write PRAM 

• Each processor runs program in lock-step, has shared memory 

• Write data races lead to random processor completing write 

• Idea: 

• Perform steps of the sequential algorithm in (1) time on max(n, m) processors 

• This is not so straightforward 

• We perform at most (n) iterations 

• Total complexity of (n) time

𝒪

𝒪
𝒪
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Data structures in common memory

•  the number of states of the input LTS 

•  the number of transitions of the input LTS 

• The input, a list of transitions: for every transition numbered : 

• A source  and target  indicating it is the transition .  

•  

•  

• current_splitter :  the current block that is used for splitting 

• For each state :  

• , the mark whether  is able to reach the current block 

• , the block  is a member of. Initially,   

• For each block label :  

• , the leader of the new block when a split is performed  

• , indicating whether the block is stable. Initially,  = false and for all blocks , ,  = true 

N : ℕ
M : ℕ

i ∈ {0,…, M}
s ∈ S t ∈ S s → t

si := s
ti := t

LB ∪ { ⊥ }
s ∈ S

marks : 𝔹 s
blocks : LB s blocks := 0

b ∈ LB

next_numberb : LB

stableb : 𝔹 stable0 b ∈ LB b ≠ 0 stableb
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Parallel Algorithm (without action labels)

• Block labels & leaders  

• Each state  has a block label ( ) 

• Same block label ≡ Same block 

• Labels are states themselves. ( ) 

• The state that is the label of a block is called the block leader 

• Mark states 

• Each state has a mark ( ) indicating if it reaches the 
splitter  

• Splitting blocks  
• Block leader remains in own block 

• For each block, a new leader is elected from states that split off

s blocks

blocks = s′ ∈ S

marks

Parallel Algorithm (w/o Labels)

Block labels & leaders

Each state s has a block label (blocks).
Same block label ⌘ Same block.
Labels are states themselves. (blocks = s 0 2 S)
The state that is the label of a block is called the block
leader.

Mark states

Each state has a mark (marks) indicating if it reaches
the splitter

Splitting blocks

Block leader remains in own block.
For each block, a new leader is elected from states that
split o↵.

s1

s4

s2

s5

s3

Bs1

Bs4
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New leader election

• current_splitter =   

•   

• The block  with label  will split in two blocks 

according to C 

• The new block  will elect a new leader  

• A concurrent write in a variable  

will choose a state as new leader

B
C := {s ∣ s → t ∧ t ∈ B}

Bs0
s0

C ∩ Bs0

next_numbers0

New leader election

I current splitter = B

I C := {s|s ! t and t 2 B}

The block Bs0 with label s0 will split in two
blocks according C .
The new block C \ Bs0 will elect a new
leader
A concurrent write in a variable
next numbers0 will choose a state as new
leader

B

C
s0

Bs0
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Parallel Algorithm (without action labels)
1. Reset variables and choose splitter 

2. Mark states that reach the splitter

Parallel Algorithm (w/o Labels)

Block labels & leaders

Each state s has a block label (blocks).
Same block label ⌘ Same block.
Labels are states themselves. (blocks = s 0 2 S)
The state that is the label of a block is called the block
leader.

Mark states

Each state has a mark (marks) indicating if it reaches
the splitter

Splitting blocks

Block leader remains in own block.
For each block, a new leader is elected from states that
split o↵.

s1

s4

s2

s5

s3

Bs1

Bs4

Step 1: select 
current_splitter := Bs4

Parallel Algorithm (w/o Labels)

1. Reset variables and choose splitter:
1 if i  N then

2 current splitter := ?;
3 marki := false;
4 if unstablei then
5 current splitter := i ;
6 end

7 end

2. Mark states that reach the splitter
7 if i  M and blocktargeti = current splitter then

8 marksourcei := true;
9 end

3. Perform splits based on marks & set unstable
10 if i  N and current splitter 6= ? then

11 unstablecurrent splitter := false;
12 if marki 6= markblocki then
13 new leaderblocki := i;

14 unstableblocki := true;
15 blocki := new leaderblocki ;
16 unstableblocki := true;
17 end

18 end

Repeat until fixed point is reached
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s4

s2

s5

s3

Bs1

Bs4

Step 1: Select current splitter := Bs4

s1

s4

s2

s5

s3

Bs1

Bs4

Step 2: Mark nodes s1, s2
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s2

s5

s3

Bs1 Bs3

Bs4

Step 3: Split B into B1,B2

Parallel Algorithm (w/o Labels)

1. Reset variables and choose splitter:
1 if i  N then

2 current splitter := ?;
3 marki := false;
4 if unstablei then
5 current splitter := i ;
6 end

7 end

2. Mark states that reach the splitter
7 if i  M and blocktargeti = current splitter then

8 marksourcei := true;
9 end

3. Perform splits based on marks & set unstable
10 if i  N and current splitter 6= ? then

11 unstablecurrent splitter := false;
12 if marki 6= markblocki then
13 new leaderblocki := i;

14 unstableblocki := true;
15 blocki := new leaderblocki ;
16 unstableblocki := true;
17 end

18 end

Repeat until fixed point is reached
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Step 1: Select current splitter := Bs4
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s2

s5
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Bs4

Step 2: Mark nodes s1, s2
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Bs1 Bs3

Bs4

Step 3: Split B into B1,B2

3. Perform splits based on marks 
& set unstable 

Repeat until fix-point is reached

Parallel Algorithm (w/o Labels)

1. Reset variables and choose splitter:
1 if i  N then

2 current splitter := ?;
3 marki := false;
4 if unstablei then
5 current splitter := i ;
6 end

7 end

2. Mark states that reach the splitter
7 if i  M and blocktargeti = current splitter then

8 marksourcei := true;
9 end

3. Perform splits based on marks & set unstable
10 if i  N and current splitter 6= ? then

11 unstablecurrent splitter := false;
12 if marki 6= markblocki then
13 new leaderblocki := i;

14 unstableblocki := true;
15 blocki := new leaderblocki ;
16 unstableblocki := true;
17 end

18 end

Repeat until fixed point is reached
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Step 1: Select current splitter := Bs4
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Step 2: Mark nodes s1, s2
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Step 3: Split B into B1,B2

Parallel Algorithm (w/o Labels)

1. Reset variables and choose splitter:
1 if i  N then

2 current splitter := ?;
3 marki := false;
4 if unstablei then
5 current splitter := i ;
6 end

7 end

2. Mark states that reach the splitter
7 if i  M and blocktargeti = current splitter then

8 marksourcei := true;
9 end

3. Perform splits based on marks & set unstable
10 if i  N and current splitter 6= ? then

11 unstablecurrent splitter := false;
12 if marki 6= markblocki then
13 new leaderblocki := i;

14 unstableblocki := true;
15 blocki := new leaderblocki ;
16 unstableblocki := true;
17 end

18 end

Repeat until fixed point is reached
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Step 1: Select current splitter := Bs4

s1
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s5
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Step 2: Mark nodes s1, s2
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Bs1 Bs3

Bs4

Step 3: Split B into B1,B2
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3. Perform splits based on marks 
& set unstable 

Repeat until fix-point is reached

Parallel Algorithm (without action labels)
1. Reset variables and choose splitter 

2. Mark states that reach the splitter

Parallel Algorithm (w/o Labels)

Block labels & leaders

Each state s has a block label (blocks).
Same block label ⌘ Same block.
Labels are states themselves. (blocks = s 0 2 S)
The state that is the label of a block is called the block
leader.

Mark states

Each state has a mark (marks) indicating if it reaches
the splitter

Splitting blocks

Block leader remains in own block.
For each block, a new leader is elected from states that
split o↵.

s1

s4

s2

s5

s3

Bs1

Bs4

Step 2: mark states 
s1, s2

Parallel Algorithm (w/o Labels)

1. Reset variables and choose splitter:
1 if i  N then

2 current splitter := ?;
3 marki := false;
4 if unstablei then
5 current splitter := i ;
6 end

7 end

2. Mark states that reach the splitter
7 if i  M and blocktargeti = current splitter then

8 marksourcei := true;
9 end

3. Perform splits based on marks & set unstable
10 if i  N and current splitter 6= ? then

11 unstablecurrent splitter := false;
12 if marki 6= markblocki then
13 new leaderblocki := i;

14 unstableblocki := true;
15 blocki := new leaderblocki ;
16 unstableblocki := true;
17 end

18 end

Repeat until fixed point is reached
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Step 1: Select current splitter := Bs4
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Step 2: Mark nodes s1, s2
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Step 3: Split B into B1,B2

Parallel Algorithm (w/o Labels)

1. Reset variables and choose splitter:
1 if i  N then

2 current splitter := ?;
3 marki := false;
4 if unstablei then
5 current splitter := i ;
6 end

7 end

2. Mark states that reach the splitter
7 if i  M and blocktargeti = current splitter then

8 marksourcei := true;
9 end

3. Perform splits based on marks & set unstable
10 if i  N and current splitter 6= ? then

11 unstablecurrent splitter := false;
12 if marki 6= markblocki then
13 new leaderblocki := i;

14 unstableblocki := true;
15 blocki := new leaderblocki ;
16 unstableblocki := true;
17 end

18 end

Repeat until fixed point is reached

s1

s4

s2

s5

s3

Bs1

Bs4

Step 1: Select current splitter := Bs4
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Step 2: Mark nodes s1, s2
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Step 3: Split B into B1,B2

Parallel Algorithm (w/o Labels)

1. Reset variables and choose splitter:
1 if i  N then

2 current splitter := ?;
3 marki := false;
4 if unstablei then
5 current splitter := i ;
6 end

7 end

2. Mark states that reach the splitter
7 if i  M and blocktargeti = current splitter then

8 marksourcei := true;
9 end

3. Perform splits based on marks & set unstable
10 if i  N and current splitter 6= ? then

11 unstablecurrent splitter := false;
12 if marki 6= markblocki then
13 new leaderblocki := i;

14 unstableblocki := true;
15 blocki := new leaderblocki ;
16 unstableblocki := true;
17 end

18 end

Repeat until fixed point is reached
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Step 1: Select current splitter := Bs4
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Step 2: Mark nodes s1, s2
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Step 3: Split B into B1,B2

Parallel Algorithm (w/o Labels)

1. Reset variables and choose splitter:
1 if i  N then

2 current splitter := ?;
3 marki := false;
4 if unstablei then
5 current splitter := i ;
6 end

7 end

2. Mark states that reach the splitter
7 if i  M and blocktargeti = current splitter then

8 marksourcei := true;
9 end

3. Perform splits based on marks & set unstable
10 if i  N and current splitter 6= ? then

11 unstablecurrent splitter := false;
12 if marki 6= markblocki then
13 new leaderblocki := i;

14 unstableblocki := true;
15 blocki := new leaderblocki ;
16 unstableblocki := true;
17 end

18 end

Repeat until fixed point is reached
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Step 1: Select current splitter := Bs4
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Step 2: Mark nodes s1, s2

s1

s4

s2

s5

s3

Bs1 Bs3

Bs4

Step 3: Split B into B1,B2

Parallel Algorithm (w/o Labels)

1. Reset variables and choose splitter:
1 if i  N then

2 current splitter := ?;
3 marki := false;
4 if unstablei then
5 current splitter := i ;
6 end

7 end

2. Mark states that reach the splitter
7 if i  M and blocktargeti = current splitter then

8 marksourcei := true;
9 end

3. Perform splits based on marks & set unstable
10 if i  N and current splitter 6= ? then

11 unstablecurrent splitter := false;
12 if marki 6= markblocki then
13 new leaderblocki := i;

14 unstableblocki := true;
15 blocki := new leaderblocki ;
16 unstableblocki := true;
17 end

18 end

Repeat until fixed point is reached
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Step 1: Select current splitter := Bs4
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Step 2: Mark nodes s1, s2
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Step 3: Split B into B1,B2
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3. Perform splits based on marks 
& set unstable 

Repeat until fix-point is reached

Parallel Algorithm (without action labels)
1. Reset variables and choose splitter 

2. Mark states that reach the splitter

Parallel Algorithm (w/o Labels)

Block labels & leaders

Each state s has a block label (blocks).
Same block label ⌘ Same block.
Labels are states themselves. (blocks = s 0 2 S)
The state that is the label of a block is called the block
leader.

Mark states

Each state has a mark (marks) indicating if it reaches
the splitter

Splitting blocks

Block leader remains in own block.
For each block, a new leader is elected from states that
split o↵.

s1

s4

s2

s5

s3

Bs1

Bs4

Step 3: split  into B
B1, B2

Parallel Algorithm (w/o Labels)

1. Reset variables and choose splitter:
1 if i  N then

2 current splitter := ?;
3 marki := false;
4 if unstablei then
5 current splitter := i ;
6 end

7 end

2. Mark states that reach the splitter
7 if i  M and blocktargeti = current splitter then

8 marksourcei := true;
9 end

3. Perform splits based on marks & set unstable
10 if i  N and current splitter 6= ? then

11 unstablecurrent splitter := false;
12 if marki 6= markblocki then
13 new leaderblocki := i;

14 unstableblocki := true;
15 blocki := new leaderblocki ;
16 unstableblocki := true;
17 end

18 end

Repeat until fixed point is reached
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Step 1: Select current splitter := Bs4
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Step 2: Mark nodes s1, s2
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Step 3: Split B into B1,B2

Parallel Algorithm (w/o Labels)

1. Reset variables and choose splitter:
1 if i  N then

2 current splitter := ?;
3 marki := false;
4 if unstablei then
5 current splitter := i ;
6 end

7 end

2. Mark states that reach the splitter
7 if i  M and blocktargeti = current splitter then

8 marksourcei := true;
9 end

3. Perform splits based on marks & set unstable
10 if i  N and current splitter 6= ? then

11 unstablecurrent splitter := false;
12 if marki 6= markblocki then
13 new leaderblocki := i;

14 unstableblocki := true;
15 blocki := new leaderblocki ;
16 unstableblocki := true;
17 end

18 end

Repeat until fixed point is reached
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Step 1: Select current splitter := Bs4
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Step 2: Mark nodes s1, s2

s1

s4

s2

s5

s3

Bs1 Bs3

Bs4

Step 3: Split B into B1,B2

Parallel Algorithm (w/o Labels)

1. Reset variables and choose splitter:
1 if i  N then

2 current splitter := ?;
3 marki := false;
4 if unstablei then
5 current splitter := i ;
6 end

7 end

2. Mark states that reach the splitter
7 if i  M and blocktargeti = current splitter then

8 marksourcei := true;
9 end

3. Perform splits based on marks & set unstable
10 if i  N and current splitter 6= ? then

11 unstablecurrent splitter := false;
12 if marki 6= markblocki then
13 new leaderblocki := i;

14 unstableblocki := true;
15 blocki := new leaderblocki ;
16 unstableblocki := true;
17 end

18 end

Repeat until fixed point is reached
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Step 1: Select current splitter := Bs4
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Step 2: Mark nodes s1, s2
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Step 3: Split B into B1,B2

Parallel Algorithm (w/o Labels)

1. Reset variables and choose splitter:
1 if i  N then

2 current splitter := ?;
3 marki := false;
4 if unstablei then
5 current splitter := i ;
6 end

7 end

2. Mark states that reach the splitter
7 if i  M and blocktargeti = current splitter then

8 marksourcei := true;
9 end

3. Perform splits based on marks & set unstable
10 if i  N and current splitter 6= ? then

11 unstablecurrent splitter := false;
12 if marki 6= markblocki then
13 new leaderblocki := i;

14 unstableblocki := true;
15 blocki := new leaderblocki ;
16 unstableblocki := true;
17 end

18 end

Repeat until fixed point is reached
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Step 1: Select current splitter := Bs4
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Step 2: Mark nodes s1, s2
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Step 3: Split B into B1,B2

Parallel Algorithm (w/o Labels)

1. Reset variables and choose splitter:
1 if i  N then

2 current splitter := ?;
3 marki := false;
4 if unstablei then
5 current splitter := i ;
6 end

7 end

2. Mark states that reach the splitter
7 if i  M and blocktargeti = current splitter then

8 marksourcei := true;
9 end

3. Perform splits based on marks & set unstable
10 if i  N and current splitter 6= ? then

11 unstablecurrent splitter := false;
12 if marki 6= markblocki then
13 new leaderblocki := i;

14 unstableblocki := true;
15 blocki := new leaderblocki ;
16 unstableblocki := true;
17 end

18 end

Repeat until fixed point is reached
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s1

s4

s2

s5

s3

Bs1

Bs4

Step 2: Mark nodes s1, s2

s1

s4

s2

s5

s3

Bs1 Bs3

Bs4

Step 3: Split B into B1,B2

Parallel Algorithm (w/o Labels)

1. Reset variables and choose splitter:
1 if i  N then

2 current splitter := ?;
3 marki := false;
4 if unstablei then
5 current splitter := i ;
6 end

7 end

2. Mark states that reach the splitter
7 if i  M and blocktargeti = current splitter then

8 marksourcei := true;
9 end

3. Perform splits based on marks & set unstable
10 if i  N and current splitter 6= ? then

11 unstablecurrent splitter := false;
12 if marki 6= markblocki then
13 new leaderblocki := i;

14 unstableblocki := true;
15 blocki := new leaderblocki ;
16 unstableblocki := true;
17 end

18 end

Repeat until fixed point is reached
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Step 1: Select current splitter := Bs4
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Step 2: Mark nodes s1, s2
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Step 3: Split B into B1,B2
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Putting labels back in LTSs

• Translating LTSs to a transition system without labels results in a LTS with (m) states. In the 

worse case, m = n , also the steps our algorithm has to take can grow quadratically 
We can do better!  

• Algorithm with labels  
1. Preprocess the states, such that states are grouped on outgoing actions 

2. For every state , keep track of a  boolean for every outgoing action 

3. Let the transitions compare these marks with the leading state  

• Has n +  time complexity 

𝒪
2

s marks

𝒪( |Act | )
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Experimental resultsExperimental results

Benchmark name |Act| |Blocks| #It Tpre Talg #It/n #It/Blocks TPar-BCRP/n Talg/#It TPar-BCRP TLR TWss TWms

Vasy 0 1 2 9 16 0.50 0.37 0.06 1.78 0.003 0.023 0.87 2.29 0.49 0.45
Cwi 1 2 26 1,132 2,786 0.63 56.5 1.43 2.46 0.029 0.020 57.1 17 18.8 21.8
Vasy 1 4 6 28 45 0.56 1.01 0.04 1.61 0.001 0.022 1.58 4.78 1.68 0.62
Cwi 3 14 2 62 122 0.63 2.68 0.03 1.97 0.001 0.022 3.30 60 3.80 3.72
Vasy 5 9 31 145 193 0.84 4.22 0.04 1.33 0.001 0.022 5.06 134 35.3 3.45
Vasy 8 24 11 416 664 0.70 13.9 0.07 1.59 0.002 0.021 15 277 31.5 3.03
Vasy 8 38 81 219 319 1.12 6.64 0.04 1.46 0.001 0.021 7.76 127 35.1 5.94
Vasy 10 56 12 2,112 3,970 0.73 82.0 0.37 1.88 0.008 0.021 82.7 860 40.9 4.6(0.2)
Vasy 18 73 17 4,087 6,882 1.01 142 0.37 1.68 0.008 0.021 143 1,354 211 21.7
Vasy 25 25 25,216 25,217 25,218 159 519 1.00 1.00 0.027 0.021 678 21,960 t.o. 416
Vasy 40 60 3 40,006 87,823 0.87 1,810 2.20 2.20 0.045 0.021 1,811 17,710 1,290 1,230
Vasy 52 318 17 8,142 15,985 2.52 338 0.31 1.96 0.007 0.021 340 11,855 368 152(20)
Vasy 65 2621 72 65,536 98,730 12.2 10,050 1.51 1.51 0.154 0.102 10,060 t.o. 27,000 1,230
Vasy 66 1302 81 66,929 91,120 6.70 5,745 1.36 1.36 0.086 0.063 5,752 480,600 20,450 240(20)
Vasy 69 520 135 69,754 113,246 4.13 3,780 1.62 1.62 0.054 0.033 3,780 94,800 16,090 35.4
Vasy 83 325 211 83,436 148,012 4.41 3,093 1.77 1.77 0.037 0.021 3,097 57,190 21,500 5,880
Vasy 116 368 21 116,456 210,537 2.50 5,900 1.81 1.81 0.051 0.028 5,900 80,900 6,360 2,930
Cwi 142 925 7 3,410 5,118 4.85 238 0.04 1.50 0.002 0.047 243 3,363 220(30) 140(20)
Vasy 157 297 235 4,289 9,682 4.58 201 0.06 2.26 0.001 0.021 206 1,058 1,240 579
Vasy 164 1619 37 1,136 1,630 8.34 125 0.01 1.43 0.001 0.077 134 8,173 470(30) 46.8
Vasy 166 651 211 83,436 145,029 6.13 5,710 0.87 1.74 0.034 0.039 5,720 80,210 29,660 9,560
Cwi 214 684 5 77,292 149,198 3.58 6,948 0.70 1.93 0.032 0.047 6,952 19,250 440(30) 450(50)
Cwi 371 641 61 33,994 85,858 4.72 4,050 0.23 2.53 0.011 0.047 4,050 26,940 6,970 1,548
Vasy 386 1171 73 113 199 7.38 14.0 0.00 1.76 0.000 0.070 21 334 30.6 34.8
Cwi 566 3984 11 15,518 23,774 16.0 3,707 0.04 1.53 0.007 0.156 3,723 98,200 6,700 2,200(200)
Vasy 574 13561 141 3,577 5,860 71.5 3,770 0.01 1.64 0.007 0.643 3,841 144,810 11,700 1,853
Vasy 720 390 49 3,292 3,782 3.97 143 0.01 1.15 0.0002 0.038 147 2,454 1,633 183
Vasy 1112 5290 23 265 365 24.0 99.3 0.0003 1.38 0.0001 0.272 123 4,570 293 36.8
Cwi 2165 8723 26 31,906 66,132 37.0 23,660 0.03 2.07 0.011 0.358 23,700 140,170 9,700 1,965
Cwi 2416 17605 15 95,610 152,099 64.1 96,400 0.06 1.59 0.040 0.634 96,500 257,200 16,300(1100) 15,300
Vasy 6020 19353 511 7,168 12,262 221 11,690 0.002 1.71 0.002 0.954 11,910 107,900 34,000(2000) 19,230
Vasy 6120 11031 125 5,199 10,014 74.0 6,763 0.002 1.93 0.001 0.675 6,837 55,750 7,010 1,280
Vasy 8082 42933 211 408 660 281 1,149 0.0001 1.62 0.0002 1.739 1,429 17,272 5,530 2,030
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Branching bisimulation

• Idea can be extended to address branching bisimulation 

• Branching bisimulation 

• Given an LTS , a relation  is a branching bisimulation relation iff 

it is symmetric and for all  with  and for all  with , we 
have either 

•  and , or 

• there is a sequence  of zero or more -transitions such that ,  
and  

• However, computation requires transitive closure of -transitions 

• Calculate at pre-processing in (n) time using (n ) processors 

• Fundamental problem: the transitive closure bottleneck [Kao & Klein 1993]

M = (S, Act, → ) R : S × S
s, t ∈ S s R t a ∈ Act ∪ {τ} s a s′ 

a = τ s′ R t

t τ ⋯ τ t′ τ s R t′ t′ a t′ ′ 
s′ R t′ ′ 

τ

𝒪 𝒪 2
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CUDA Programming 
Part 2
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Second hands-on session

• Go to folder 2-reduction, look at the source file reduction.cu 

• Make sure you understand everything in the code 

• Task: 
• Implement the kernel to perform a single iteration of parallel reduction 

• Hints: 
• It is assumed that enough threads are launched such that each thread only needs to compute the sum 

of two elements in the input array 

• In each iteration, an array of size n is reduced into an array of size n/2 

• Each thread stores its result at a designated position in the output array
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Hint – Parallel Summation
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Global synchronisation

• CUDA has no mechanism to indicate global synchronisation of all threads across the grid 

• Instead, enforce synchronisation points by breaking down computation into multiple kernel 
launches

Kernel launch 0

Kernel launch 1

Kernel launch 2

Kernel launch 3

Kernel launch 4
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Barrier synchronisation

• Two forms: 

• Global synchronisation: achieved between kernel launches 

• Intra-block synchronisation: Contrary to global synchronisation, CUDA does provide a 
mechanism to synchronise all threads in the same block 

• __syncthreads() 

• All threads in the same block must reach the __syncthreads() before 
any of them can move on 

• Best used to split up computation of each block in several phases 
• Tightly linked to use of (block-local) shared memory, which we will address 

tomorrow afternoon
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Third hands-on session

• Go to folder 3-bfs, look at the source file 
bfs.cu 

• Make sure you understand everything in the code 

• Task: 
• Implement the kernel to perform a single iteration 

of parallel breadth-first search (BFS) 

• Hints: 
• In BFS, a set OPEN is maintained, consisting of states 

that require exploration, i.e., of which the outgoing 
transitions need to be followed. Once a state is 
explored, it is moved to a set CLOSED
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SCC decomposition of graphs 
MEC decomposition of MDP graphs 

Joint work with Dragan Bošnački and Joost-Pieter Katoen 
(CAV 2014)
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Strongly Connected Components

• Model checking: checking liveness (something good eventually 
happens) 

• Metabolic networks: metabolites in SCC can be converted to 
each other
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Strongly Connected Components

• Sequential: linear-time [Tarjan,’72], [Dijkstra & Feijen,’88] 
• DFS based; hard to parallelise; next to impossible for many-core
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Strongly Connected Components

• Relevant for model checking, to detect potential for infinite 
(undesired) behaviour 

• Study for alternatives [Barnat et al.,’11] 

• Forward-Backward BFS (with trimming) [Fleischer et al.’00] 

• For many graphs best option, disappointing for model 
checking problems (5x speedup)
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Strongly Connected Components
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Strongly Connected Components
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Strongly Connected Components
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Strongly Connected Components

• Green states + state 9: an SCC 

• Other SCCs either completely consist of yellow or blue states 

• Trimming procedure: remove trivial SCCs (states with no in- or outgoing edge)76



Forward / Backward BFS (with trimming)

280 Form Methods Syst Des (2016) 48:274–300

for symbolic model checking, but without noting the potential for parallel execution [37].
This algorithm is based on a breadth-first search (BFS) strategy, combining a forward and a
backward search. It has worst-case complexity O(|V |2+|V | · |E |), but offers great potential
for GPU-based parallelization.

The Forward-Backward algorithm of Fleischer et al. is presented in Algorithm 1, with two
modifications: first of all, a so-called trimming procedure has been added at line 1, which is
discussed later in this section. Because of this, we refer to this algorithm from now on as FBT.
Second of all, besides a graph G = (V, E), it also takes as input a candidate set of vertices
J ⊆ V . The algorithm starts by (randomly) selecting a pivot vertex p (see Algorithm 1,
line 3) from J . The SCC to which p belongs is then found by performing both a forward
BFS and a backward BFS starting from p, to determine the forward and backward closure
(of p), respectively (Algorithm 1, lines 4 and 5). The intersection of the vertices reached
via the forward and backward BFSs constitutes an SCC (and is removed, Algorithm 1, line
6). The graph vertices are then partitioned into the vertices belonging only to the forward
closure, those only in the backward closure, and those outside both closures. These subsets
are referred to as search regions. Subsequently, FBT can be invoked recursively in parallel
on the three search regions. This can be done, since all other, not yet detected SCCs, are
contained in one of these search regions.

A necessary condition for the correctness of the FBT algorithm is that set J does not
become ∅ as long as at least one of the generated search regions is not empty, i.e., at least
one recursive call of FBT can be made in lines 8–10 with a non-empty vertex set. Initially
the algorithm is called with J = V0, where V0 is the set of vertices in the initial graph. The
non-emptyness condition can be trivially fulfilled by setting for each recursive call J = V ,
where V is the set of vertices of graph G on which the FBT algorithm is applied, i.e., the
input graph. Later, in the context of the MEC algorithm (Sect. 2.4), we present an alternative
choice for J , which in fact is the motivation for us introducing a candidate set to FBT in the
first place.

As previously mentioned, the FBT algorithm involves a trimming step [27] (see Algo-
rithm 1, line 1). This step eliminates the trivial SCCs consisting of a single vertex. The
trimming procedure exploits topological sort elimination by starting in a vertex with zero
in- or out-degree. As such vertex cannot be a part of a non-trivial SCC, they can be safely
removed to avoid using them as pivots in the FBT search. Since the removal can create other
trimming candidates, the procedure is iterated (in the method Trim(V ) in Algorithm 1) until
there are no vertices for trimming left. Trimming is also used in our parallel SCC algorithm.
Several studies [1,23,26] have shown that parallel SCC decomposition algorithms including
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GPU SCC Decomposition

• Stored on GPU: 

• outgoing transitions per state 

• incoming transitions per state (transposed graph) 

• result per state (current search region) 

• Results[s] = Results[t] ⇒ s and t in same SCC 

• Put pivots in search frontiers, scan transitions, put successors in 
frontiers, ... 

• 3 bits per integer for search frontiers, closed sets, locking, ...
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Data

5 7Start of outgoing 
trans. of state i 

(offsets)

2

X X

0

Outgoing trans.

Start incoming trans.

Incoming trans.

Results

• Transitions contain state IDs, Results indicate SCCs
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Forward/Backward BFS
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BFS on a GPU

286 Form Methods Syst Des (2016) 48:274–300

Fig. 3 Example Compressed Sparse Row format graph storage. The transitions in trans are determined by
their destination states. The arrays encode the graph induced by the MDP in Fig. 1 without the actions and
probabilities. One can see, for instance, that state s0 is a source of transitions to s1, s2, and s4, and from s1
there is one transition to s1, and there are two transitions to s2 and two transitions to s3

of Algorithm 3 we assume stepsize = 1. In order to check the status of state i , the source state
of the transitions we are going to explore, we copy offsets[i] to srcinfo (line 3). We check if
state i belongs to the frontier (line 4) by inspecting the highest bit of the variable srcinfo. If
state i is in the frontier it is marked as explored by resetting the highest bit and setting the
second highest bit of offsets[i]. After that all transitions of state i are explored. To this end
first the offset interval corresponding to the transitions of i is established in lines 6 and 7.
After that all transitions are inspected to possibly generate new frontier states (lines 8–14).
It is checked at line 10 whether transition t has the special value empty. This is related to
the optimisation described in Sect. 5.1, and can be ignored for now. The target state tgtstate
of the inspected transition is extracted from t in line 11 and a copy of the offsets entry for
tgtstate is saved in tgtinfo. In line 13 it is checked if the target state is new, i.e., it has not
been visited yet. If this is the case, it is added to the frontier by setting the highest bit of
the corresponding offsets entry. Note that any possible occurring data races due to multiple
threads reaching the same successor state simultaneously can be considered benign; every
thread executing line 14 tries to update offsets[tgtstate] in the same way, namely by setting
the highest bit.

Such an approach to BFS requires many complete scans of offsets to detect the current
frontier and explore states. Since global memory is slow, this is a major performance bottle-
neck.

Li et al. [26] remark that a GPU BFS which avoids a one-to-one mapping between threads
and nodes is preferable over the standard quadratic approach. In other words, approaches like
the one of Merrill et al. [28], which uses a work queue, would be preferable. An important
reason is that many threads otherwise idle, and with large differences in the out-degree of
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Pivot selection

• Select for each new region new pivot 

• Let threads with states in same region race 

• Reuse outgoing trans as hash table 

• Use atomic writes and write-lock bit

Outgoing trans.

0 0Results

• 3 * Results[i] + inForward[i] + 2 * inBackward[i]
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Benchmark characteristics
296 Form Methods Syst Des (2016) 48:274–300

Table 2 Structural properties of the graphs

Model |V| (M) |E| (M) av. out max. out #SCCs

1 wlan.2500 12.6 28.1 2.23 129 12.5M

2 phil.7 11.0 98.5 8.97 14 1

3 diningcrypt.10 42.9 279.4 6.51 20 42.9M

4 test-and-set.7 51.4 468.5 9.12 17 4,672

5 leader.7 68.7 280.5 4.08 14 42.2M

6 phil_lss.5.10 72.9 425.6 5.84 10 1

7 coin.8.3 87.9 583.0 6.63 16 5.4M

8 mutual.7.13 76.2 653.7 8.58 14 1

9 zeroconf_dl.F.200.1k.6 118.6 273.5 2.31 10 118.6M

10 firewire_dl.800.36.(0.2) 129.3 293.6 2.27 5 129.3M

|V|: number of vertices, |E|: number of edges, av. out: average out-degree, max. out: maximum out-degree,
#SCCs: number of SCCs. Explanation of the model instances: wlan.2500: wlan6 with trans- time-
max=2,500, phil_lss.5.10: phil_lss with 5 phils, K = 10, coin8.3: coin8 with K = 3, mutual7.13: mutual with
7 processes, 13 states each, zeroconf_dl.F.200.1k.6: zeroconf_time_bounded with reset = false, T = 200,
N = 1, 000, K = 6, firewire_dl.800.36.(0.2): firewire impl/deadline with deadline = 800, delay = 36,
f ast = 0.2

Fig. 6 Runtimes (in logscale) of
SCC decomposition using a
single-core implementation of
Tarjan’s algorithm and the overall
best GPU configuration (‘GPU
FBT0,7’)
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we only use three. In addition, their implementation does not accept MDP graphs, so some
reimplementation work would be required. It is clear, however, that coalesced data access,
which is improved by using the restructuring option, is the main cause for the improved
speedups.

We also performed some controlled experiments in which we disabled the hybrid search
kernel (F0,1-nh). These show that using the hybrid kernel at best only causes aminor speedup.
In some cases, disabling it even results in speedups, because it results for those particular
graph structures in fewer memory accesses.

The contribution of the local caches is minimal (cases F3,1 and F3,7), and in most cases
using them causes a slowdown. This is probably due to the fact that by using caches, states are
assigned to thread blocks in a way that depends on the structure of the graph, as opposed to a
direct one-to-one mapping. When threads visit unexplored states, they add them to the cache
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SCC decomposition results

296 Form Methods Syst Des (2016) 48:274–300
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we only use three. In addition, their implementation does not accept MDP graphs, so some
reimplementation work would be required. It is clear, however, that coalesced data access,
which is improved by using the restructuring option, is the main cause for the improved
speedups.

We also performed some controlled experiments in which we disabled the hybrid search
kernel (F0,1-nh). These show that using the hybrid kernel at best only causes aminor speedup.
In some cases, disabling it even results in speedups, because it results for those particular
graph structures in fewer memory accesses.
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using them causes a slowdown. This is probably due to the fact that by using caches, states are
assigned to thread blocks in a way that depends on the structure of the graph, as opposed to a
direct one-to-one mapping. When threads visit unexplored states, they add them to the cache
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NVIDIA K20 GPU 
5 GB global memory 
13 SMs / 2,496 SPs

15-30x speedup
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Markov Decision Process (MDP)

• MDP: model probabilistic 
systems with components 

• Non-deterministic and 
probabilistic choice

high low
Recharge1

1-β

Search

β

Wait 1Searchα
1-α

1
Wait
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Markov Decision Process (MDP)

• (Maximal) End Component 
(MEC) generalises SCC 

• Limiting properties that hold 
with probability 1.0 

• Randomised algorithms, 
stochastic games,… 

• V is EC iff (1) V is SCC, (2) for all v 
in V, exists probability 
distribution staying in V

high low
Recharge1

1-β

Search

β

Wait 1Searchα
1-α

1
Wait
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MEC decomposition

• [Chatterjee & Henzinger,’12] 

1. Compute SCCs 

2. For each SCC , determine  with no probability distribution staying in  

3. if  not empty: Remove  

4. else:  is MEC 

5. Goto step 1 

•  contains  plus all vertices that can reach  regardless of the resolution of the non-
deterministic choice(s)

C U C
U Ayr(U ∩ C )

C

Ayr(U ) U U
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MEC decomposition results

• Up to 79x speedup 

• Besides SCC decomposition, other 
steps are pleasantly parallel for 
GPUs

298 Form Methods Syst Des (2016) 48:274–300

Fig. 8 Runtimes (in logscale) for MEC decomposition comparing the basic decomposition algorithm against
the overall best GPU configuration

Fig. 9 Runtimes (in logscale) for
MEC decomposition comparing
different pivot selection
procedures in FBT0,7, and a
version of BFBT0,7 with
warp-aggregation

Also regarding BFBT, in a number of cases, the loss of potential parallelism (due to the
number of identified regions not growing as quickly in BFBT as in FBT) seems to outweigh
the ability to more efficiently perform FBT searches. This is interesting, since it demonstrates
that not all optimisations of a given sequential algorithm necessarily are also improvements
for a parallel version of it.

8 Conclusions

We presented GPU algorithms for finding SCCs and MECs in sparse graphs that are based
on FBT and a bounding version of it. The implementations exhibit speedups of 15-30 times
for SCC decomposition and up to 79 times for MEC decomposition. A critical improvement
for SCC decomposition compared to related work is achieved by improving (coalesced) data
access. Other causes are a new pivot selection procedure and the chosen data representation,
while techniques such as local caching donot lead to performance improvement. Furthermore,
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Other results

• GPU accelerated Bounded Forward / Backward BFS 

• When one BFS finishes, bound other BFS to same region 

• Better complexity, but limits potential for parallelism 

• Informed pivot selection 

• No noticeable improvements on the GPU
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Overview

CUDA Programming 
model (API)

threads

warps

GPU Hardware

Think in terms of threads 
Reason on program correctness

Think in terms of warps 
Reason on program performance
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Tomorrow in Part 2 of Accelerated Verification!
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