
Accelerated Verification - part 2

Software Engineering & Technology

Anton Wijs 
VTSA Summer school 2024 / 8 & 9 July



Schedule 9 July 2024

• 09:00 – 09:15  CUDA Programming model Part 3 

• 09:15 – 10:00  4th Hands-on Session + Solution 

• 10:00 – 11:00  GPUexplore: explicit-state model checking with GPUs 
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CUDA Programming model 
Part 3
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Hardware overview



Memory space: Registers

• Example: 

• Registers 
• Thread-local scalars or small constant size arrays are stored as registers 

• Implicit in the programming model 

• Behaviour is very similar to normal local variables 

• Not persistent, after the kernel has finished, values in registers are lost

__global__ void matmul_kernel(float *C, float *A, float *B) { 
    int tx = threadIdx.x;     //local variable in registers 
    float local_sum[4];       //small compile-time sized array in registers



Memory space: Global

• Example: 

• Global memory 
• Allocated by the host program using cudaMalloc()  

• Initialized by the host program using cudaMemcpy() or previous kernels 

• Persistent, the values in global memory remain across kernel invocations 

• Not coherent, writes by other threads will not be visible until kernel has finished

__global__ void matmul_kernel( float *C,  //C points to global memory 
                               float *A,  //A points to global memory 
                               float *B)  //B points to global memory 
{



Memory space: Constant

• Constant memory 
• Statically defined by the host program using __constant__ qualifier 

• Defined as a global variable 

• Initialized by the host program using cudaMemcpyToSymbol() 

• Read-only to the GPU, cannot be accessed directly by the host 

• Values are cached in a special cache optimized for broadcast access by multiple threads 
simultaneously, access should not depend on threadIdx

__constant__ float filter[filter_width * filter_height]; //initialized by a host function 
__global__ void convolution_kernel(float *output, float *input) { 
   ... 
   for (j = 0; j < filter_height; j++) { 
      for (i = 0; i < filter_width; i++) { 
         sum += input[y + j][x + i] * 
               filter[j * filter_width + i]; //index j and i do not depend on threadIdx (x and y) 
      } 
   }



Memory space: Shared

• Shared memory 
• Variables have to be declared using __shared__ qualifier, size known at compile time 

• In the scope of thread block, all threads in a thread block see the same piece of memory 

• Not initialised, threads have to fill shared memory with meaningful values 

• Not persistent, after the kernel has finished, values in shared memory are lost 

• Not coherent, __syncthreads() is required to make writes visible to other threads within the thread block 

__global__ void histogram(int *output, int *values, int n) { 
    int i = threadIdx.x + blockIdx.x * blockDim.x; 
    __shared__ int sh_output[NUM_BINS];                   //declare shared memory array 
    if(i < n) {       
        int bin = values[i]; 
        atomicAdd(&sh_output[bin], 1);                     //increment bin in shared memory 
        __syncthreads();                                  //wait for all threads 
    ...



Shared memory: Example
__global__ void transpose(int h, int w, float* output, float* input) { 
    int i = threadIdx.y + blockIdx.y * block_size_y; 
    int j = threadIdx.x + blockIdx.x * block_size_x; 

    __shared__ float sh_mem[block_size_y][block_size_x];      //declare shared memory array 

    if (j < w && i < h) { 
        sh_mem[threadIdx.y][threadIdx.x] = input[i*w+j];   //fill shared with values from global 
    } 
    __syncthreads();                                          //wait for all thread in block 

    i = threadIdx.x + blockIdx.y * block_size_y; 
    j = threadIdx.y + blockIdx.x * block_size_x; 
    if (j < w && i < h) { 
        output[j*h+i] = sh_mem[threadIdx.x][threadIdx.y];  //store to global using shared memory 
    } 
}



Fourth hands-on session

• Go to folder 4-reduction_fast, look at the source files 

• Task: 
• Implement the kernel for reduction again, this time in such a way that shared memory is used to sum 

the per-thread partial sums into a single per-thread block partial sum 

• Hints: 
• The number of thread blocks does not depend on n. All threads from all blocks first iterate 

(collectively) over the problem size (n) to obtain a per-thread partial sum 

• Within the thread block the per-thread partial sums are to be combined to a 
per-thread block partial sum 

• Each thread block stores its partial sum to out_array[blockIdx.x] 

• The kernel is called twice, the second kernel is executed with only one thread block to combine all per-
block partial sums to a single sum



Solution
... 
__shared__ float sh_mem[block_size_x];              //declare shared memory array 
sh_mem[ti] = sum;                                   //store thread-local partial sum 
__syncthreads();                                    //wait for all threads in the block 

#pragma unroll 
for (unsigned int s=block_size_x/2; s>0; s/=2) {    //iterate with s: 128, 64, 32, ..., 1  
    if (ti < s) {                                   //threads with id < s 
        sh_mem[ti] += sh_mem[ti + s];               //add partial sum of thread ‘s’ away from ti 
    } 
    _syncthreads();                                 //wait for all threads in the block 
} 

if (ti == 0) { 
    out_array[blockIdx.x] = sh_mem[0];              //store the per-block partial sum in global 
}



Revisiting SCC detection (BFS)

Form Methods Syst Des (2016) 48:274–300 289

Fig. 5 Hybrid structure with
u = 2, combining interleaved and
non-interleaved storage

sentation tends to require more separate data accesses. In the example, the transitions in the
fully interleaved list can be read in three accesses, while the hybrid list requires five accesses.

In Algorithm 3, restructured transitions are supported when setting stepsize to the warp
size. Working with a hybrid representation would involve checking whether the transitions of
a state are stored in a segment or not before exploring them, and setting stepsize appropriately.

5.2 GPU search mechanism

To illustrate our implementation ofFBT forGPUs,wewill discuss someof itsmore interesting
aspects. Essentially, every step of Algorithm 1 is parallelised by means of a separate kernel.
In addition to this, we also have a kernel for the combination of lines 4 and 5, i.e. the BFSs.
In this hybrid kernel, iterations of both BFSs are performed simultaneously during a single
scan of the offsets.

Algorithm 4 describes theGPU forward BFS. A local cache is allocated in sharedmemory.
The size of this cache is defined in the host code, i.e. externally, as its declaration mentions.
Its contents is initialised as empty. At lines 3–7, the offsets entries assigned to the executing
thread are read and checked.

The approach to BFS as given in Algorithm 3 requires many complete scans of offsets to
detect the current frontier and explore states. Since global memory is slow, this is a major
performance bottleneck. To mitigate this, we have opted for using SM local state caches
residing in the shared memory. The gpu- fwdBfs kernel accepts a given number of iterations
NrIters. In the first iteration (lines 3–7), the usual scanning is performed, but in addition to
being added to the frontier in the global memory, newly discovered states are added to the
cache. After the first iteration, lines 8–13 are executed, in which the cache is scanned for
exploration work.

In Algorithm 5, the explore procedure is described, which is in the implementation
actually directly integratedwithgpu- fwdBfs. First, stepsize is defineddepending onwhether
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EXPLORE involves 
storing state ID in 
shared memory 
cache



GPUexplore: explicit-state model 
checking with GPUs 

Joint work with Nathan Cassee, Dragan Bošnački, Jan Heemstra, 
Muhammad Osama, Thomas Neele, Rik van Spreuwel, Jaco van de Pol 
(TACAS 2014, 2023, 2024, CAV 2016, FM 2016, ATVA 2016, GaM 2017, 

SPIN 2023)



Correctness of Concurrent Systems

• Distributed, concurrent systems common-place, but very difficult to develop 

• network applications, communication protocols, multi-threaded applications 

• Systems may contain bugs such as deadlocks and livelocks 

• Deadlock: computation not finished, but system cannot progress 

• Livelock: system repeats computation steps without progressing 

• Given a model of a concurrent system, these, and other functional properties can be checked 
using model checking 

• All states in which the system (design) can end up are inspected 

• It is automatic 

• Provides useful feedback (counter-examples)



Model checking

𝜑
Model of a (concurrent) system 

Finite automata
Functional requirement 

Temporal logic formula

Model checker

+ counter-example
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GPU accelerated explicit-state model checking
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• GPUexplore version 1.0: TACAS 2014 (networks of LTSs) 
• Verification of deadlock freedom and safety properties: 2015 (STTT) 

• GPUexplore version 2.0: FM 2016 
• + Partial-Order Reduction: ATVA 2016 

• + Verification of suffix-bounded LTL formulae: CAV 2016 

• GPUexplore version 3.0: TACAS & SPIN 2023 (Frontiers in HPC, 2024) 
• Accepts Finite Automata with data variables & arrays (EFAs) 

• Uses GPU Tree Database for compact state storage 

• Support for Linear-Time Temporal Logic (LTL): TACAS 2024

2016: 36 seconds instead of 1.5 hours! 
(TACAS, CAV, ATVA, FM, Software Tools for Technology Transfer)



GPU accelerated explicit-state model checking
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• Contributions: 
• First implementation and evaluation of a tree database for GPUs in the context 

of GPU explicit-state model checking 

• Comparison of using various hashing techniques 

• First to implement Cleary compression for GPUs 

• Novel combination of Cleary compression and Cuckoo hashing: 
Cleary-Cuckoo



GPUexplore overview
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• Global memory hash table 
• Open / Closed  

• Each Streaming Multiprocessor (SM) runs multiple thread blocks (512 threads) 
• Each thread block has a (shared memory) cache: 

• temporarily store succs. 
• local dupl. detection 

• Fine-grained parallelism 
• Groups of n threads are assigned to state vectors of size n (thread ⟷ process)

SM n

global memory (state storage)

shared mem. (state cache)

threads (successor generation)
SM 0

shared mem. (state cache)

threads (successor generation)
while there are unexplored states:
    - select set of unexplored states S
        (mark them explored)
    - for all successors s' of all s ∈ S:
          - store s' in the (local) state cache
    - sync. cache with global memory



GPUexplore 3.0 workflow
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CUDA 
code generator

SLCO 
model

Generic
GPUexplore

code

Model specific
GPUexplore

code

NVIDIA Compiler
(nvcc)

GPUexplore
executable

CPU Thread
block

worker

Thread
block

worker

State
cache

State
cache

Global state storage

...
GPU

• One search iteration (of a thread block): 
• Fetching unexplored states (place them in 

shared memory work tile) 
• Explore the states, store successors in cache 
• Storing successors in global hash table

• SLCO (Simple Language of Communicating Objects): concurrent state machines 
with data 

• Given a model, generate code to execute the state machines



Tree database: store system states as binary trees

• With data, system states of SLCO models can be large 

• Laarman, Van de Pol, Weber, Parallel Recursive State Compression for Free, SPIN (2011) 
• Laarman, Optimal compression of combinatorial state spaces, Innovations in Systems and Software 

Engineering (2019)

21

A B E

C D

<A,B,C,D,E> <A',B,C',D,E>

A' B

C' D

E

<A,B',C,D,E'>

A B' E'

<A',B,C,D,E'>



Unfolding recursion

• Recursion should always be avoided in a GPU program 

• Requires a stack, but thread stacks are stored in (slow) global memory 

• And yet, storing trees is often implemented using recursion 

• Solution: write out recursion, possible because 
for a given model, the tree structure is fixed

22

store(n) { 
addr1 = store(n->left); 
addr2 = store(n->right); 
set_addrs(n, addr1, addr2); 
write(n); 

} store(n) { 
addr1 = write(n->left->left); 
set_addrs(n->left, addr1, null); 
addr1 = write(n->left); 
addr2 = write(n->right); 
set_addrs(n, addr1, addr2); 
write(n); 

}

n



A thread block in GPUexplore 3.0

1. Fetch root nodes to be explored from global memory, place them in the work tile 
1. Some may have been claimed in previous search iteration 

2. Distribute work over threads 
3. Fetch the trees of the roots, store them in the cache 
4. Threads produce successors and store them in the cache 
5. When all threads are done, the cache is synchronised with the global hash table 

1. Any new states may be claimed for the next iteration 

When fetching trees, only store the leafs? No!

23

shared vars. work tile cache (hash table)

shared memory



Cache complete trees for efficient global memory storage of successors

• Store all nodes of the trees to be explored in the cache 

• Each node requires 64 bits for storage plus 32 bits for cache pointers 
• Additional benefit: sharing (compression) of nodes in the cache

24
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Tree compression becomes very time-efficient if storage of 
new trees can be restricted to new nodes



Hash table

• Data structure to store elements 
• Fast insertion and lookup 

• Ideal when the domain is too large to store all elements 
in memory, and it is expected that not all elements need 
to be stored 

• Hash function h maps element e to position h(e) 
• Can also be used to store (key, value) pairs 

• Store values either separately, or physically 
together with key 

• Involving values does not make hashing more 
complicated, so I ignore them 

• Collisions: h may hash keys e1, e2 to the same address 
• h(e1) = h(e2)

25

Source: Wikipedia



Cuckoo hashing
• Idea: whenever there is a collision, evict the old element, store the new element, and move the 

old element using another hash function 
• Example: E collides with A, A is moved, collides with B, B is moved 
• Benefit: constant time lookups 
• Drawbacks: 

• no constant time insertion, can lead to eviction chains 
• Restrict chains in size, four hash functions are often enough to reach load factor of 90% 

• GPUs: first hash function to be implemented (Alcantara et al., 2011)
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Alcantara et al.: Building an Efficient Hash Table on the GPU (2012)



State compression

• Can we use less space to store nodes? 

• J.G. Cleary. Compact Hash Tables Using Bidirectional Linear Probing, IEEE Transactions on 
Computers (1984) 

• Idea: consider a node n requiring m bits to store 

• Hash (bit scramble) n to h(n) (m bits) 

• Split h(n) into h(n)0 and h(n)1 

• Store h(n)1 at address h(n)0 

• To reconstruct stored nodes, h must be reversible: 
• Get h(n)1 from h(n)0 

• Combine h(n)0 and h(n)1 

• n = h-1(h(n))

27



Cleary compression to compress roots
• But how to handle collisions?  
• Cleary defined an elaborate scheme with linear probing, which forms clusters 

• As nodes are moved, only roots of state trees can be compressed: use a root table and a non-root 
(internal) table 

• Group: consecutive list of remainders, associated with one home location 
• Cluster: consecutive groups, enclosed by empty positions 
• v bit: corresponding address is a home location 
• c bit: last address of a group, followed by another group, or an empty address 
• Example stores 7, 9, 33, 34, 38, 48, 60, 69 
• Algorithm to restore elements: move to the left from the stored location, 

count the number of set c bits, reach the left of the cluster, and count back the same number of set v bits
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Image from Van der Vegt and Laarman, A Parallel Compact Hash Table, MEMICS (2011) 



Cleary compression to compress roots

• Van der Vegt and Laarman: this scheme still works quite well for multi-threaded use 
• Each cluster requires a lock, clusters must sometimes be relocated 

• For a GPU, this is bad news: 
• many global memory accesses, may not be aligned with (fixed-size) buckets 
• locks 

• Can we devise an alternative approach?

29

Image from Van der Vegt and Laarman, A Parallel Compact Hash Table, MEMICS (2011) 



Contribution: combine Cleary compression with Cuckoo hashing

• Collision handling in Cuckoo hashing: when a new node n must be stored at the address 
where node m is stored 

• Evict m, store n 

• Rehash m with another hash function, and store m at new position 

• When the maximum length of an eviction chain is reached, conclude that the table is full

30



Contribution: combine Cleary compression with Cuckoo hashing

• Combination: 
• Hash n using function h0: h0(n) 

• Split h0(n) into h0(n)0 and h0(n)1 

• Try to store h0(n)1 plus hash function ID 0 at h0(n)0 

• If there is a collision with an hi(m)1 

• Evict hi(m)1 and store h0(n)1 

• Combine hi(m)0 and hi(m)1 

• Retrieve m = hi-1(hi(m)) 

• Hash m using function hi+1: hi+1(m) 

• …
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Experimental results

32

• BEEM benchmarks (Brno), translated to SLCO 

• Bu: buckets, Cmp: Cleary compression, cu: Cuckoo, i<n>: # iterations per kernel (function) launch 

• No Cuckoo: 32 (reversible) hash functions; when collision occurs, rehash current element

14 A.J. Wijs and M. Osama

Fig. 4: Speed obtained by di↵erent GPU configurations.

elements, 32 bits each, and a non-root table with 229 elements, 64 bits each.
This enables storing 58-bit roots (two pointers to the non-root table) in 58 �
32 + dlog2(32)e + 1 = 32 bits. When using buckets with more than one element

(cmp+bu), we have root buckets of size 8, and non-root buckets of size 16. The
non-root buckets make full use of the cache line, but the root buckets do not.
Making the latter larger means that too many bits for root addressing are lost
for root compression to work (the remainders will be too large).

Root compression allows turning Cuckoo hashing on (cmp(+bu)+cu) or o↵
(cmp(+bu)). When it is o↵, essentially Cleary-Cuckoo is still performed, except
that evictions are not allowed, meaning that hashing fails as soon as all possible
32 buckets for a node are occupied.

In the configuration bu, neither root compression nor Cuckoo hashing is
applied. We use one table with 230 64-bit elements and buckets of size 16. For
reasons related to storing global addresses in the state cache, we cannot make
the table larger. The 32 hash functions are used without allowing evictions.

Finally, multiple iterations can be run per kernel launch. Shared memory is
wiped when a kernel execution terminates, but the state cache content can be
reused from one iteration to the next when a kernel executes multiple iterations,
by which trees already in the cache do not need to be fetched again from the
tree database. We identified 30 iterations to be e↵ective in general (i30), and
experimented with a single iteration per kernel launch (i1).

With the CPU tools, we performed reachability analysis on 1- and 4-core
configurations, denoted by Sp-1 and Sp-4 for Spin, and Lm-1 and Lm-4 for
LTSmin. We only enabled state compression and basic reachability (without
property checking), to favour fast exploration of large state spaces.

For benchmarks, we used models from the Beem benchmarks [?] of con-
current systems, translated to Slco and Promela (for Spin). We scaled some
of them up to have larger state spaces. Those are marked in Table 1 with ‘+’.
Timeout is set to 3600 seconds for all benchmarks.

Fig. 4 compares the speeds of the di↵erent GPU configurations in millions
of states per second, averaged over 5 runs. For each configuration, we sorted
the data to observe the overall trend. The higher the speed the better. The



Experimental results
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• BEEM 
benchmarks 
(DVE -> SLCO) 

• Comparison 
with LTSmin 
and SPIN (1- 
and 4-cores) 

• Cleary 
compression 
not only more 
compact, also 
faster! (Bu+i1 
vs. Cmp+i1) 

• Cuckoo slows 
down!

A GPU Tree Database for Many-Core Explicit State Space Exploration 15

Table 1: Millions of states per second for various reachability tools and configura-
tions. Pink cells: out of memory. Yellow cells: timeout. Green cell: best average.
o.m.: out of memory at initialisation. SU: speedup of (cmp + i30) vs. (Lm-1).

Input CPU tools Configurations

Model States 1 4 1 4
SU

i1 i1 i1 i1 i30 i30

adding.20+ 84,709,120 1.128 3.223 1.211 3.938 100 1.96 49.597 56.793 48.879 36.934 74.026 47.694 61x

adding.50+ 529,767,730 0.856 o.m. 1.354 5.356 100 1.96 48.403 103.872 77.243 49.625 131.444 57.968 97x

anderson.6 18,206,917 0.623 1.362 0.516 1.309 122 1.82 14.814 16.035 13.647 11.265 34.111 17.649 62x

anderson.7 538,699,029 0.599 o.m. 0.448 1.583 141 2.75 9.309 21.192 14.244 10.426 22.326 10.435 41x

at.5 31,999,440 0.646 1.495 0.653 1.880 85 1.86 19.894 29.158 23.633 18.204 38.457 21.375 59x

at.6 160,589,600 0.454 0.869 0.695 2.387 85 1.90 17.901 38.275 27.275 19.498 38.418 20.359 55x

at.7 819,243,816 0.527 o.m. 0.666 2.372 97 1.98 12.415 23.629 17.381 13.194 22.329 13.378 34x

at.8+ 3,739,953,204 0.534 o.m. 0.555 1.817 97 1.97 5.452 7.246 7.593 11.698 7.287 11.854 13x

bakery.5 7,866,401 1.400 2.570 0.410 0.904 140 2.51 11.504 7.838 7.585 6.407 19.362 12.782 47x

bakery.7 29,047,471 1.228 2.592 0.580 1.618 140 2.49 13.236 9.361 9.021 7.698 29.783 17.456 51x

bakery.8 841,696,300 0.760 1.269 0.690 2.436 140 2.40 3.745 29.410 23.957 17.116 32.778 18.215 48x

elevator2.3 7,667,712 0.554 1.099 0.463 0.985 189 3.96 4.890 3.259 3.185 2.817 6.261 4.827 14x

elevator2.4 91,226,112 0.263 0.561 0.623 1.945 213 3.97 3.025 3.746 2.907 3.087 3.267 2.703 5x

elevator2.5+ 1,016,070,144 0.189 o.m. 0.473 1.630 317 5.95 1.540 1.871 1.545 1.520 1.839 1.491 4x

frogs.4 17,443,219 1.044 2.228 0.553 1.423 219 3.49 8.423 10.253 8.686 7.767 11.549 8.168 21x

frogs.5 182,772,126 0.531 1.048 0.751 2.630 251 3.84 6.766 9.573 8.214 6.898 9.846 6.943 13x

lamport.6 8,717,688 1.277 1.375 0.490 1.096 96 1.91 11.813 5.126 5.225 4.697 27.966 19.335 57x

lamport.7 38,717,846 1.001 1.822 0.672 1.979 116 1.98 18.176 23.205 18.915 16.170 34.321 20.641 51x

lamport.8 62,669,317 0.917 1.776 0.698 2.194 116 1.98 17.717 25.947 21.015 17.132 35.387 20.864 50x

loyd.2 362,880 1.278 0.758 0.255 0.497 90 1.05 7.339 4.204 4.220 3.723 3.243 3.930 13x

loyd.3 239,500,800 0.633 o.m. 0.650 2.338 114 1.96 18.268 44.073 28.970 26.556 48.328 28.248 74x

mcs.5 60,556,519 0.706 0.615 0.453 1.489 148 2.97 14.504 24.498 19.537 14.710 29.635 15.912 65x

mcs.6 332,544 1.240 0.244 0.181 0.331 156 2.75 6.037 3.003 3.097 2.751 3.446 3.131 19x

peterson.5 131,064,750 0.711 1.617 0.727 2.435 140 2.98 16.034 31.975 21.394 17.813 32.331 16.681 42x

peterson.6 174,495,861 0.852 0.756 0.720 2.451 140 2.98 15.503 32.725 22.975 17.198 34.902 17.030 45x

peterson.7 142,471,098 0.683 1.496 0.652 2.269 175 2.63 13.077 25.667 18.603 13.868 26.183 13.120 37x

phils.6 14,348,906 0.208 0.422 0.240 0.670 150 1.49 4.410 7.458 5.528 4.789 7.084 4.543 30x

phils.7 71,934,773 0.179 0.297 0.246 0.764 151 1.49 3.585 5.702 4.762 4.064 5.382 3.885 22x

phils.8 43,046,720 0.160 0.361 0.243 0.788 160 1.49 4.842 9.151 6.987 5.119 8.973 5.089 37x

szymanski.5 79,518,740 0.665 1.571 0.535 1.815 180 2.91 11.944 17.803 14.416 11.653 18.357 11.674 33x

Average 0.728 1.309 0.58 1.844 n/a 13.139 21.068 16.355 12.813 26.621 15.246 40x

cmp + i30 mode (without Cuckoo hashing or larger buckets) is the fastest for the
majority of models. On the other hand, it fails to complete exploration for at.8,
the largest state space with 3.7 billion states, due to running out of memory. If
Cuckoo hashing is enabled with root compression, all state spaces are successfully
explored, which confirms that higher load factors can be achieved [?]. However,
Cuckoo hashing negatively impacts performance, which contradicts [?]. Although
it is di�cult to pinpoint the cause for this, it is clear that it results from our
hashing being done in addition to the exploration tasks, while in papers on GPU
hash tables [?,?], hashing is analysed in isolation. With the extra variables and
operations needed for exploration, hashing should be lightweight, and Cuckoo
hashing introduces handling evictions. The more complex code is compiled to a
less performant program, even when evictions do not occur.

Table 1 compares GPU performance with Spin and LTSmin. We refer to
our tool as GPUexplore +Slco. From the results of Fig. 4, we selected a
set of configurations demonstrating the impact of the various options. For each
model, Bits and CR gives the state vector length in bits and the compression
ratio, defined as (number of roots ⇥ number of leaves per tree) / (number of
nodes). With the compression ratio, we measure how e↵ective the node sharing
is, compared to if we had stored each state individually without sharing. In
addition, the speed in millions of states per second is given. Regarding out of
memory, we are aware that Spin has other, slower, compression options, but we
only considered the fastest, to favour the CPU speeds. Times are restricted to



Conclusions

• GPU state space exploration with support for state machines with variables 
• Code generation to execute model transitions 
• For memory efficiency, store state vectors as binary trees 
• Various optimisations applied 
• Novel combination of Cleary compression and Cuckoo hashing 
• Speedups up to 100x compared to state-of-the-art 

• Future work: 
• Hashing: search for ideal speed / load factor balance 
• Support for property verification (Linear Temporal Logic) 
• Multi-GPU support 
• Verification of probabilistic systems
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Support for Linear-Time Temporal Logic

35

• Kripke structure to represent system behaviour 

• Finite set of states  (including an initial state) 

• Left-total transition relation  
•  is a labelling function 

• Labels address state-local atomic propositions 
• E.g.: x = 0

𝒮
→ ⊆ 𝒮 × 𝒮

λ : 𝒮 → 2AP



Automata-based LTL model checking

• Transform the negation of an LTL formula  into a 
Nondeterministic Büchi Automaton (NBA)  

• An NBA is an automaton with a finite set of accepting 
states  (visualised with double borders) 

• A path through an NBA visits accepting states infinitely 
often

φ
B¬φ

𝒬F

Negation of 𝖦𝖥 p

36
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Automata-based LTL model checking

⊗

Compute the product of Kripke 
structure  and K B¬φ
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Automata-based LTL model checking

⊗

Compute the product of Kripke 
structure  and K B¬φ

Combine states of  and : K B¬φ
𝒬⊗ = {⟨s, q⟩ ∣ s ∈ 𝒮 ∧ q ∈ 𝒬}
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Automata-based LTL model checking

⊗

Compute the product of Kripke 
structure  and K B¬φ

,  and  

implies that        
(  means  is a subset 
of the APs satisfying )

s → s′ q φ q′ K, s′ ⊧ φ
⟨s, q⟩ φ

⊗ ⟨s′ , q′ ⟩
K, s′ ⊧ φ λ(s′ )

φ

37



Automata-based LTL model checking

⊗

Compute the product of Kripke 
structure  and K B¬φ

Initial states: combination of the 
initial state of , and the initial 
state(s) of  plus the states 
reachable in   via transitions 
with a label  such that 

K
B¬φ

B¬φ
K, s ⊧ φ

37



Automata-based LTL model checking

⊗

Compute the product of Kripke 
structure  and K B¬φ

 is accepting iff  is accepting⟨s, q⟩ q

37



Automata-based LTL model checking

• LTL model checking can be performed by solving the 
emptiness problem 

• A Kripke structure  satisfies LTL formula  iff 
 is empty, i.e., has no (accepting) paths 

• As paths are infinite, in a finite-state system, an 
accepting path is a lasso consisting of: 

• A finite sequence of transitions from an initial 
state to an accepting state  

• A cycle including  

K φ
K ⊗ B¬φ

⟨s, q⟩
⟨s, q⟩

38



Automata-based LTL model checking

• State-of-the-art sequential algorithms are Depth-First Search 
(DFS) based 

• Nested Depth-First Search (NDFS) [Courcoubetis et al., 1992]: 
• When backtracking over an accepting state in the first DFS, 

start a second (nested) DFS 

• When the second DFS reaches the stack of the first DFS, a 
counter-example is found 

• Algorithms using Strongly Connected Component detection 
(for instance, with Tarjan’s algorithm, 1972) 

• Multi-core NDFS [Laarman et al., 2011] (with AW): 
• Multiple threads perform DFS-like searches (randomised)
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DFS is not suitable for GPUs — see GPUexplore:

40

• Global memory hash table 
• Open / Closed  

• Each Streaming Multiprocessor (SM) runs multiple thread blocks (512 threads) 
• Each thread block has a (shared memory) cache: 

• temporarily store succs. 
• local dupl. detection 

• Fine-grained parallelism 
• Groups of n threads are assigned to state vectors of size n (thread ⟷ process)

while there are unexplored states do
     - fetch a set of unexplored states S
       to state cache (mark them explored)
     - for all successors s' of all s    S do
          - store s' in state cache
     - synchronize state cache with the 
       global hash table

Global memory (state hash table)

Threads (successor generation)

Shared memory (state cache)

SM 1 SM n
Threads (successor generation)

Shared memory (state cache)



So what about Breadth-First Search based LTL model checking?

• Algorithms initially developed for distributed model checking 

• Back-Level Edges [Barnat et al., 2003] searches for transitions that close a cycle 

• Maximal Accepting Predecessors (MAP) [Brim et al., 2004] is shown to perform better 

• One-Way-Catch-Them-Young (OWCTY) [Černá & Pelánek, 2003] uses topological sorting, 
is not on-the-fly, i.e., cannot detect counter-example while constructing the state space 

• A heuristic, incomplete version of MAP is added as first phase to OWCTY [Barnat et 
al., 2009], so it may detect counter-examples early, if they exist 

• Heuristic, incomplete version of MAP is also implemented in SPIN as the Piggyback 
algorithm [Holzmann, 2012, Filippidis & Holzmann, 2014] 

• Post-exploration versions of MAP and OWCTY have been implemented for the GPU 
[Barnat et al., 2009, 2012]
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[Barnat et al., 2009, 2012]

Let us consider MAP, as it is both complete and on-the-fly
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MAP algorithm
• If the states in  are totally ordered 

• For instance, by comparing the hash table addresses at 
which they are stored 

• then if an accepting state is its own maximal accepting 
predecessor, it is in a cycle 

• In MAP, a reference to the maximal predecessor of a 
state is propagated along the search 

• However, if a state is not its own MAP, we do not know 
anything 

• Therefore, MAP works in rounds; in each round, states in  
for which it has been determined that they are not in a cycle 
are no longer considered accepting (  is not in a cycle) 

• As in each round, at least one state is no longer 
considered accepting, MAP terminates

𝒬F

𝒬F

⟨s0, q1⟩

∨

42
⟨s0, q1⟩ > ⟨s2, q1⟩ > ⟨s3, q1⟩
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However, MAP is very conservative
• Let us consider a BFS
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However, MAP is very conservative
• Let us consider a BFS 
• The  and  states are tuples 

• For all ,  

•  is current reference of  

• At the end of a round, every  
with  and  should 
be reopened in the next round 

• Here, MAP requires n rounds 

• Can we do better? 

• Yes, Hitchhiking

r̄i q̄i

0 ≤ i < j ≤ n q̄i < q̄j

p(q̄) q̄
q̄ ∈ 𝒬F

p(q̄) ≠ ϵ p(q̄) ≠ q̄

Observation: as the propagation of  was not interrupted, 
there is no need to propagate it again in the next round

q̄0
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Hitchhiking

• Keep track of a set of active states  and a set of interrupted states  

• Initially, , and  strictly becomes smaller after each round 

• Initially, , states are added to  when ‘their’ search is interrupted 

• When a state  is reached for the first time, we set 

𝒜 ℱ
𝒜 = 𝒬F 𝒜
ℱ = ∅ ℱ

q̄ ∈ 𝒬F p(q̄) = q̄

-search is interrupted; 
add  to 
r̄

r̄ ℱ
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Hitchhiking

• Keep track of a set of active states  and a set of interrupted states  

• Initially, , and  strictly becomes smaller after each round 

• Initially, , states are added to  when ‘their’ search is interrupted 

• When a state  is reached for the first time, we set 

𝒜 ℱ
𝒜 = 𝒬F 𝒜
ℱ = ∅ ℱ

q̄ ∈ 𝒬F p(q̄) = q̄

-search is interrupted; 
add  to 
r̄

r̄ ℱ
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Hitchhiking

• Keep track of a set of active states  and a set of interrupted states  

• Initially, , and  strictly becomes smaller after each round 

• Initially, , states are added to  when ‘their’ search is interrupted 

• When a state  is reached for the first time, we set 

𝒜 ℱ
𝒜 = 𝒬F 𝒜
ℱ = ∅ ℱ

q̄ ∈ 𝒬F p(q̄) = q̄

-search is interrupted; 
However, do not add  to 
r̄

r̄ ℱ

• If , the -search may detect cycle 
• If -search is interrupted, either  is 

added to , or same situation applies 
for  (but as cycle is finite and  is 
totally ordered, this cannot be applicable 
for all involved states in )

q̄′ = r̄′ q̄′ 
q̄′ q̄′ 

ℱ
q̄′ 𝒜

𝒜
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Hitchhiking — Postprocessing at end of round

• : set of open states (to be explored)𝒪

if  then 
 for all  do in parallel 
  if  then 
   if  and  then  
   else  
   if  then  
  if  then  else 

ℱ ≠ ∅
r̄ ∈ 𝒬⊗

r̄ ∈ 𝒜
r̄ ∈ ℱ p(r̄) ≠ r̄ 𝒪 ← 𝒪 ∪ {r̄}

𝒜 ← 𝒜∖{r̄}
r̄ ∈ ℱ ℱ ← ℱ∖{r̄}

r̄ ∈ 𝒜 p(r̄) ← r̄ p(r̄) ← ϵ
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Hitchhiking — Postprocessing at end of round

• : set of open states (to be explored)𝒪

if  then 
 for all  do in parallel 
  if  then 
   if  and  then  
   else  
   if  then  
  if  then  else 

ℱ ≠ ∅
r̄ ∈ 𝒬⊗

r̄ ∈ 𝒜
r̄ ∈ ℱ p(r̄) ≠ r̄ 𝒪 ← 𝒪 ∪ {r̄}

𝒜 ← 𝒜∖{r̄}
r̄ ∈ ℱ ℱ ← ℱ∖{r̄}

r̄ ∈ 𝒜 p(r̄) ← r̄ p(r̄) ← ϵ
If  was never updated, 
then  cannot be in a cycle!

p(r̄)
r̄
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Hitchhiking implementation in GPUexplore 3.0

• Spot library used to generate NBAs [Duret-Lutz et al., 2022] 
• CUDA C++ code generator developed in Python + TextX + Jinja2

CUDA
code generator

SLCO
model,

LTL
formula

Generic 
CUDA code

(Hitchhiking)

NVIDIA Compiler
(nvcc)

CPU GPU
State Space Exploration with on-the-fly Hitchhiking 

Global memory (state hash table)

Thread block

Shared memory (work tile) Shared memory (work tile)

Thread block
Spot (ltl2tgba)

Model-specific
CUDA code (next-
state functions)

GPU
Executable
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Experiments
• Compare Hitchhiking with MAP on GPU 

• Existing GPU MAP implementation (not on-the-fly) no longer maintained 

• We added MAP (on-the-fly) to GPUexplore 3.0 

• Compare Hitchhiking with state-of-the-art CPU algorithms 

• 2-core NDFS in the SPIN model checker [Holzmann & Bošnački, 2007] 
• n-core Combined NDFS (CNDFS) in the LTSmin model checker [Evangelista et al., 2012] 
• All tools use state compression, but imprecise methods (bit state hashing, …) have been 

disabled 

• Benchmarks: 32 (translated) models from the BEEM benchmark suite [Pelánek, 2007] 
• Some scaled up to make them more interesting for parallel model checking 

• State spaces ranging between 150,000 and 1.2 billion states 

• Per model, 3 LTL formulae were checked
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Experiments

• Used hardware: 
• GPU: Titan RTX GPU: 4,608 cores (1.35 GHz), 24 GB memory, 2018 

• Generated code compiled with CUDA C++ 12.2 compiler 
• CPU: 32-core AMD EPYC 7R13 (2.65 GHz), 2021 

• Out of memory set at 32 GB
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Table 1: Runtime (sec.) of LTL checking on GPU vs. contemporary multi-core tools. : Model was altered to remove deadlocks.
m.: Out of memory. t.: Time out. : ' is satisfied. : ' is not satisfied. 7: Incorrect result. Times in bold indicate that
Hitchhiking was faster than Spin and LTSmin. Significantly worse Map times (at least 0.1 second slower) are marked H.

Model
(2-core NDFS) (1-core CNDFS) (32-core CNDFS)

'1 '2 '3 '1 '2 '3 '1 '2 '3 '1 '2 '3 '1 '2 '3

adding.20+ 103 104 106 110.7 110.8 112.8 14.65 14.47 14.2 0.88 0.88 0.899 0.879 0.91 0.898

adding.50+ m. m. m. 677.5 673.3 667.2 42.24 43.55 44.34 3.66 3.67 3.679 3.663 3.684 3.679

anderson.6 118 0.17 155 162.4 2.62 195.2 37.43 0.02 41.95 4.57 0.168 3.238 H 19.704 0.168 H 12.85

anderson.7 m. 3.9 m. m. 50.63 m. m. 9.07 m. 219 1.963 148.39 H 1275 H 2.381 H 865.2

anderson.8 m. 3.84 m. m. 29.11 m. m. 0.08 m. 1531 0.945 m. H t. H 2.062 m.

at.5 0.06 0.06 92.5 0.001 0.001 120.3 0.001 0.001 22.53 0.144 0.001 0.6 0.145 0.001 0.602

at.6 0.06 0.06 m. 0.001 0.001 911.1 0.001 0.01 73.74 0.148 0.001 2.706 0.148 0.001 2.708

at.7 0.06 0.06 m. 0.001 0.001 m. 0.001 0.001 m. 0.165 0.001 19.63 0.167 0.001 19.67

bakery.5 0.05 0.05 0.04 0.001 0.001 0.001 0.01 0.001 0.001 0.042 0.042 0.041 0.042 0.045 0.044

bakery.6 0.05 0.05 0.05 0.001 0.001 0.001 0.01 0.001 0.001 0.042 0.043 0.047 0.043 0.044 0.068

bakery.7 0.04 0.05 0.05 0.001 0.001 0.001 0.01 0.001 0.001 0.041 0.042 0.042 0.043 0.042 0.042

elevator2.3 3.21 5.87 34.9 2.5 0.01 34.24 0.46 0.04 11.28 1.63 1.965 0.608 1.678 H 2.946 0.633

elevator2.4+ 32.5 66.9 m. 33.94 0.001 570.1 18.21 0.05 76.64 32.39 11.18 9.083 H 43.66 H 67.57 H 9.432

frogs.4 0.07 39.5 40.6 0.001 43.16 42.23 0.001 8.65 8.42 0.052 0.69 0.698 0.062 0.698 0.699

frogs.5 0.05 m. m. 0.001 1141 1105 0.01 66.27 63.75 0.046 26.1 26.4 0.046 H 33.6 H 34.49

lamport.6 0.05 0.05 0.04 0.001 0.001 0.001 0.01 0.01 0.001 0.043 0.043 0.042 0.046 0.043 0.042

lamport.7 0.05 0.05 36.4 0.01 0.01 289.7 0.01 0.001 33.2 0.192 0.204 17.02 0.193 0.204 H 95.82

lamport.8 0.05 0.05 0.05 0.001 0.001 0.001 0.01 0.001 0.001 0.043 0.042 0.042 0.043 0.043 0.042

loyd.3 m. m. m. m. m. m. m. m. m. 2.59 2.6 2.627 2.59 2.6 2.631

mcs.5 0.12 0.12 233 0.001 1.02 m. 0.01 0.001 89.8 0.219 0.229 9.915 0.22 0.229 H 72.56

peterson.5 0.12 0.12 m. 0.001 0.001 1449 0.02 0.02 109.9 3.425 2.094 75.78 3.425 2.094 H 348.6

peterson.6 0.07 0.07 60.6 0.001 0.001 m. 0.01 0.01 189.4 0.54 0.543 58.85 0.565 0.54 H 348

peterson.7 0.18 0.17 m. 0.04 0.001 1232 0.06 0.04 92.64 1.202 0.96 169.4 1.198 0.961 H 654.2

phils.6 1.1 1.36 164 0.001 0.001 190.6 0.001 0.001 173.1 0.041 0.031 1.156 0.042 0.042 1.155

phils.7 5.99 10.3 m. 0.001 0.02 m. 0.001 0.001 m. 0.001 0.031 5.156 0.001 0.034 H 5.228

phils.8 3.09 2.58 m. 0.001 0.01 m. 0.01 0.001 m. 0.001 0.026 2.443 0.041 0.028 2.484

telephony.4 39.7 0.05 42.4 59.81 0.001 7 12.51 0.001 7 0.44 0.051 0.265 0.442 0.052 0.265

telephony.5 m. 0.05 m. m. 0.001 7 264.5 0.01 7 28.5 0.066 14.6 28.45 0.067 H 14.91

telephony.6 23.3 0.05 m. 0.04 0.001 7 0.05 0.01 7 0.314 0.057 26.56 0.324 0.058 H 26.63

szymanski.5 25.1 24.3 152 10.62 0.01 268 0.01 0.01 25.93 0.287 0.555 2.363 H 1.122 0.555 2.388

leader filters.5 0.05 0.05 5.34 0.001 0.001 7.46 0.01 0.01 3.71 0.058 0.07 0.145 0.054 0.07 0.151

leader filters.6 0.05 0.05 169 0.001 0.001 583 0.01 0.01 40.93 0.051 0.045 5.294 0.051 0.045 5.33652



Conclusions and future work

• We presented Hitchhiking, a new algorithm for massively parallel LTL model checking 

• Based on MAP, but keeps track of search interruptions 

• Implemented in GPUexplore 3.0 

• Speedups up to 150x compared to 32-core CNDFS LTSmin 

• First time GPU accelerated LTL model checking has been applied to state spaces with 
more than a billion states 

• Future work: 
• Shortest counter-example construction 

• Other temporal logics (CTL) 

• Probabilistic Model Checking (NWO project)
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Beyond the CUDA Programming model



Implementation of model



Implementation of model

How are threads actually scheduled?



Warps as Scheduling Units

• Each block is executed as a set of 32-thread 
warps 

• Warps are scheduling units in SMs 

• The threads in a warp execute in lockstep: 
SIMT (single instruction multiple threads) 

• Be aware of warps when optimising code, to 
limit: 

• thread divergence 

• uncoalesced memory accesses

Warps as Scheduling Units

• Each block is executed 
as 32-thread warps 31…0 1 63…32 33 64 65

Warp 0 Warp 1 Warp 2

• Warps are scheduling units in SM 

• how are they scheduled? 

• Threads in a warp execute in SIMT 

• what is SIMT (Single Instruction Multiple Thread)? 

• What about control divergence?

5

Warps as Scheduling Units

• Warps are scheduling units in SM

Streaming Multiprocessor (SM)

Ti
m

e 
(c

yc
le

)

Pool of warps

Warp 0

Warp 2

Warp 3

Warp 1

 …

Warp 63

Warp 0 Warp 2Warp 1

Warp 2 Warp 4 Warp 5Warp 3

Warp 0 Warp 1

…
…

(cont.)

6[Images by Ming Yang]



Thread divergence

• If executions of threads in a warp branch in different directions, they have to wait for each 
other



Thread divergence

• If executions of threads in a warp branch in different directions, they have to wait for each 
other

If C then

A
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B
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• If executions of threads in a warp branch in different directions, they have to wait for each 
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Thread divergence

• If executions of threads in a warp branch in different directions, they have to wait for each 
other

If C then

A

else

B

⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓

⤓ ⤓⤓⤓⤓⤓⤓ ⤓⤓⤓⤓⤓⤓ ⤓⤓⤓⤓⤓⤓
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Thread divergence

• Avoid identical computations in different branches



Thread divergence and program correctness

• Synchronisation barriers should be called by either none or all of the threads 

• They cannot be called in a divergent block



Uncoalesced memory accesses

• Memory accesses of threads in a warp are combined as much as possible



Uncoalesced memory accesses

• Memory accesses of threads in a warp are combined as much as possible
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serialised to 2 accesses, each fetching 16 entries



Uncoalesced memory accesses

• Memory accesses of threads in a warp are combined as much as possible

y = R[TId*2] ⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓

y = R[TId] ⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓⤓

X    X    X    X    X    X    

X  X  X  X  X  X  X  X  X  X  X  X  

serialised to 2 accesses, each fetching 16 entries

only 1 access



Occupancy

• Occupancy = # of active warps / Maximum number of resident warps per SM 

• Occupancy limiters: 

• Register usage 

• Shared memory usage 

• Block size

[Based on slides by Ming Yang]

Occupancy

• Occupancy = # of active warps / Maximum number of 
resident warps per SM 

• Occupancy limiters: 

• Register usage 

• Shared memory usage 

• Block size
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Compute Capabilities
Technical Specifications 2.x 3.0 3.2 3.5 3.7 5.0 5.2 5.3

Maximum number of resident 
warps per SM 48 64



Occupancy limiter: Register usage

• Example 1 (capability = 3.0) 

• Kernel uses 21 registers per thread 

• # of active threads = 65536 / 21 ≈ 3120 

• # of warps = 3120 / 32 = 97 

• > 2048 / 32 = 64, therefore occupancy of 100%

Occupancy limiter: Register usage

• Example 1 (capability = 3.0) 

• Kernel uses 21 registers per thread 

• # of active threads = 64K / 21 ! 3121 

• > 2048 thus an occupancy of 100%
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Maximum number of resident 
threads per SM 1536 2048



Occupancy limiter: Register usage

• Example 2 (capability = 3.0) 

• Kernel uses 64 registers per thread 

• # of active threads = 65536 / 64 = 1024 

• # of warps = 1024 / 32 = 32 

• Occupancy = 32 / 64 = 50%

Occupancy limiter: Register usage

• Example 1 (capability = 3.0) 

• Kernel uses 21 registers per thread 

• # of active threads = 64K / 21 ! 3121 

• > 2048 thus an occupancy of 100%

11

Compute Capabilities
Technical Specifications 2.x 3.0 3.2 3.5 3.7 5.0 5.2 5.3

Maximum number of 32-bit 
registers per thread block 32 K 64 K 32 K

Maximum number of resident 
threads per SM 1536 2048



Occupancy limiter: Shared memory

• Example 1 (capability = 3.0) 

• Kernel uses 16 bytes shared memory per thread 

• # of active threads = 49152 / 16 = 3072 

• # of warps = 3072 / 32 = 96 

• > 64, therefore occupancy of 100%

Occupancy limiter: Shared memory

• Example 1 (capability = 3.0) 

• Kernel uses 16 bytes of shared memory per thread 

• # of Active threads = 48K / 16 = 3072 

• > 2048 thus an occupancy of 100%
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Occupancy limiter: Shared memory

• Example 1 (capability = 3.0) 

• Kernel uses 32 bytes shared memory per thread 

• # of active threads = 49152 / 32 = 1536 

• # of warps = 1536 / 32 = 48 

• Occupancy = 48 / 64 = 75%

Occupancy limiter: Shared memory

• Example 1 (capability = 3.0) 

• Kernel uses 16 bytes of shared memory per thread 

• # of Active threads = 48K / 16 = 3072 

• > 2048 thus an occupancy of 100%

13

Compute Capabilities
Technical Specifications 2.x 3.0 3.2 3.5 3.7 5.0 5.2 5.3

Maximum amount of shared 
memory per SM 48 KB 112 

KB
64 
KB

96 
KB

64 
KB

Maximum number of resident 
threads per SM 1536 2048

Maximum number of resident 
warps per SM 48 64



Occupancy

• Do we want higher occupancy? 

• Yes. Latency can be hidden better when more threads are running 

• Is occupancy a metric of performance? 

• No! It is just one of the contributing factors 

• There are examples where lowering the occupancy positively affects performance 

• Matrix multiplication and FFT



Fifth hands-on session

• Go to folder 5-matrix-sum, look at the source files 

• Task: 
• Restructure the input data, and rewrite the kernel for matrix row summation, to achieve coalesced 

memory accesses 

• Hints: 
• To each row, one thread is assigned 

• Consider which elements in the input array need to be accessed by a single thread



Hint

X X X X

X X X X

… … …



Revisiting BFS

286 Form Methods Syst Des (2016) 48:274–300

Fig. 3 Example Compressed Sparse Row format graph storage. The transitions in trans are determined by
their destination states. The arrays encode the graph induced by the MDP in Fig. 1 without the actions and
probabilities. One can see, for instance, that state s0 is a source of transitions to s1, s2, and s4, and from s1
there is one transition to s1, and there are two transitions to s2 and two transitions to s3

of Algorithm 3 we assume stepsize = 1. In order to check the status of state i , the source state
of the transitions we are going to explore, we copy offsets[i] to srcinfo (line 3). We check if
state i belongs to the frontier (line 4) by inspecting the highest bit of the variable srcinfo. If
state i is in the frontier it is marked as explored by resetting the highest bit and setting the
second highest bit of offsets[i]. After that all transitions of state i are explored. To this end
first the offset interval corresponding to the transitions of i is established in lines 6 and 7.
After that all transitions are inspected to possibly generate new frontier states (lines 8–14).
It is checked at line 10 whether transition t has the special value empty. This is related to
the optimisation described in Sect. 5.1, and can be ignored for now. The target state tgtstate
of the inspected transition is extracted from t in line 11 and a copy of the offsets entry for
tgtstate is saved in tgtinfo. In line 13 it is checked if the target state is new, i.e., it has not
been visited yet. If this is the case, it is added to the frontier by setting the highest bit of
the corresponding offsets entry. Note that any possible occurring data races due to multiple
threads reaching the same successor state simultaneously can be considered benign; every
thread executing line 14 tries to update offsets[tgtstate] in the same way, namely by setting
the highest bit.

Such an approach to BFS requires many complete scans of offsets to detect the current
frontier and explore states. Since global memory is slow, this is a major performance bottle-
neck.

Li et al. [26] remark that a GPU BFS which avoids a one-to-one mapping between threads
and nodes is preferable over the standard quadratic approach. In other words, approaches like
the one of Merrill et al. [28], which uses a work queue, would be preferable. An important
reason is that many threads otherwise idle, and with large differences in the out-degree of
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Consider stepsize = 32



Suggestion for data structures

• Design such that accesses are coalesced most of the time 

• For instance, often better to have structure of arrays than array of structures

struct Pt { 
float x; 
float y; 
float z; 

}; 

struct Pt myPts[N];

struct Pt { 
float x[N]; 
float y[N]; 
float z[N]; 

}; 

struct Pt myPts;



Suggestion for data structures

• Design such that accesses are coalesced most of the time 

• For instance, often better to have structure of arrays than array of structures

struct Pt { 
float x; 
float y; 
float z; 

}; 

struct Pt myPts[N];

struct Pt { 
float x[N]; 
float y[N]; 
float z[N]; 

}; 

struct Pt myPts;

Consider access pattern when each thread ti 
computes myPts[ti].x + myPts[ti].y + myPts[ti].z



Inter-thread/inter-warp communication

• Barriers (__syncthreads()) 

• Easy to use 

• Coarse-grained at block level 

• Atomics 

• Fine-grained 

• Can be used to implement wait-free algorithms 

• Communication via memory 

• Beware of memory consistency

[Based on slides by Sylvain Collange]



Atomics

• Read, modify, write in one operation 

• Cannot be interleaved with accesses of other threads 

• Available operators (both 32-bit and 64-bit): 

• atomicAdd, atomicSub, atomicInc, atomicDec 
• atomicMin, atomicMax 
• atomicExch, atomicCAS 
• atomicAnd, atomicOr, atomicXor 

• Both for global and shared memory 

• Beware for performance! 

• Atomic operations to the same memory address are serialised



Example: reduction

• Each block performs local reduction of data, atomics are used to accumulate the result



Warp-synchronous programming

• Threads in a warp run synchronously, therefore no need to synchronise them explicitly 

• Warps can be treated as threads with SIMD capabilities, similar to threads on a Xeon Phi, for 
instance 

• Special intra-warp instructions can be used to efficiently exchange data among threads in a 
warp



Warp vote instructions



Warp shuffle instructions



Other features

• NVIDIA GPUs implement a relaxed memory consistency model 

• Thread fences to enforce explicit ordering of memory accesses 

• Declare shared variables as volatile 

• __syncthreads() implies thread fence 

• New features are added frequently 

• For instance, CUDA 9 (end 2017) introduced cooperative groups



Optimising Code

• Moving data around is more expensive than computing on it 

• Start with a simple algorithm and keep it for readability and correctness checks 

• Optimize only when needed 

• Focus on the bottlenecks first (compute-bound or memory-bound) 

• Auto-tune (automatically explore the parameter space) 
• Different loop orderings 
• Different tile sizes, on multiple levels L3, L2, and L1 
• Different number of threads, thread blocks, vector lengths, etc 
• e.g. using the Kernel Tuner (https://github.com/benvanwerkhoven/kernel_tuner)

https://github.com/benvanwerkhoven/kernel_tuner


Optimisation in GPUexplore: different work distribution

• GPUexplore 2 work distribution Thread-to-FSM 
• If threads focussing on the same state reside in the same warp, they can efficiently communicate 
• Network of LTSs: Each thread does (more or less) the same operation, so no thread divergence 
• SLCO models: each thread will call a different function, so thread divergence! 

• GPUexplore 3 work distribution Warp-to-FSM 
• Now threads in the same warp focus on the same process, so they execute the same function 
• Threads diverge on the state of their process. Can we reduce this effect? 
• Sort the states based on the state of this process 

• Hou et al.. Fast Segmented Sort on GPUs, ICS (2017): intra-warp bitonic merge-sort
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Thread-to-FSM work distribution:

Warp-to-FSM work distribution:

Example: three FSMs 

: state of FSM  in state   

Colour indicates warp (size 4) 

Sj
i i j



GPU hash tables

bool cooperative_find(int e, int *T) { 
  int warptid = threadIdx.x % 32; 
  int bucketid = h(e); 
  int entry = h(e) * 32 + warptid; 
  return ballot(entry == e); 
}

• Hash table implemented as (integer) array with hash function(s) 

• To achieve coalesced accesses, partition hash table into buckets consisting of 32 integers 

• Let a warp handle the lookup / insertion of an element



GPU hash tables

int cooperative_insert(int e, int *T) { 
  int warptid = threadIdx.x % 32; 
  int bucketid = h(e); 
  int entry = h(e) * 32 + warptid; 
  int e_lane = __ffs(ballot(entry == EMPTY)); 
  if (warptid == e_lane) { 
    atomicExch(h(e) * 32 + warptid, e); 
  } 
  return h(e) * 32 + e_lane; 
}

• Hash table implemented as (integer) array with hash function(s) 

• To achieve coalesced accesses, partition hash table into buckets consisting of 32 integers 

• Let a warp handle the lookup / insertion of an element



Wrap-up

• GPUs provide enormous potential to accelerate computations 
• In formal verification: bisimulation checking, BFS, SCC/MEC decomposition, explicit-state 

model checking 

• Not covered: SAT solving, bounded model checking, term rewriting, theorem proving (ask 
Jan!), probabilistic model checking (again, ask Jan!) 

• A GPU program is not hard to write. However, optimising one requires hardware knowledge 

• Think of: 

• barriers 

• types of memory 

• warps 

• intra-warp instructions 

• Can GPUs help to accelerate your research?


