EINDHOVEN
I e UNIVERSITY OF
TECHNOLOGY

Accelerated Verification - part 2

Anton Wijs
VTSA Summer school 2024 / 8 & 9 July

Software Engineering & Technology TU/e

Schedule 9 July 2024

e 09:00 — 09:15 CUDA Programming model Part 3

e 09:15-10:00 4th Hands-on Session + Solution

e 10:00 — 11:00 GPUexplore: explicit-state model checking with GPUs

e 11:00 - 11:30 Beyond the CUDA Programming model

e 11:30-12:00 5th Hands-on Session + Solution

e 12:00 - 12:25 Warp-centric programming and atomics in GPUexplore
e 12:25-12:30 Wrap-up

TU/e

CUDA Programming model
Part 3

CUDA memory hierarchy

Thread
Registers §
Thread
Shared memory Block

Global memory Grd
Constant memory (0, 0) (1,0)

I I

TU/e

Hardware overvie

W

Texture Processing Cluster 1

Streaming
Multiprocessor 1

SP | SP | SP | SP

1 2 3 4

SP_|SP | SP | SP

5 6 7 8

Streaming
Multiprocessor 2

SP | SP, SP | SP

1 2 3 4

SP_|SP | SP | SP

5 6 7 8

Streaming
Multiprocessor 3

SP|SP, ISP, ISP,

1 2

SP|SP|spP SPJ

5 6 7

TPCs

10

TU/e

Memory space: Registers

e Example:

__global void matmul kernel(float *C, float *A, float *B) ({

int tx = threadIdx.x; //local variable in registers
float local sum[4]; //small compile-time sized array in registers
L — R

e Registers
e Thread-local scalars or small constant size arrays are stored as registers
e Implicit in the programming model
e Behaviour is very similar to normal local variables

e Not persistent, after the kernel has finished, values in registers are lost

TU/e

Memory space: Global

e Example:

__global void matmul kernel(float *C, //C points to global memory
float *A, //A points to global memory
float *B) //B points to global memory

¢ Global memory
¢ Allocated by the host program using cudaMalloc ()
e |nitialized by the host program using cudaMemcpy () or previous kernels
e Persistent, the values in global memory remain across kernel invocations

e Not coherent, writes by other threads will not be visible until kernel has finished

TU/e

Memory space: Constant

__constant__ float filter[filter width * filter height]; //initialized by a host function

__global void convolution kernel (float *output, float *input) ({

j < filter height; J++) {
0; 1 < filter width; i++) {

*

for (3 = 0;
for (i =
sum += inputly + J][x + 1i]
filter[j * filter width + i]; //index j and i do not depend on threadIdx (x and y)

e Constant memory
e Statically defined by the host program using constant qualifier
e Defined as a global variable
e Initialized by the host program using cudaMemcpyToSymbol ()
e Read-only to the GPU, cannot be accessed directly by the host
* Values are cached in a special cache optimized for broadcast access by multiple threads
simultaneously, access should not depend on threadIdx
TU/e

Memory space: Shared

__global void histogram(int *output, int *values, int n) {
int 1 = threadIdx.x + blockIdx.x * blockDim.x;
__shared int sh output[NUM BINS]; //declare shared memory array
if(i < n) {

int bin = values|[i];
atomicAdd (&sh output[bin], 1); //increment bin in shared memory
__syncthreads () ; //wait for all threads

L — P

e Shared memory
* Variables have to be declared using shared qualifier, size known at compile time
¢ In the scope of thread block, all threads in a thread block see the same piece of memory
* Not initialised, threads have to fill shared memory with meaningful values
* Not persistent, after the kernel has finished, values in shared memory are lost

* Not coherent, syncthreads () is required to make writes visible to other threads within the thread block

TU/e

Shared memory: Example

__global void transpose (int h, int w, float* output, float* input) {
int i = threadlIdx.y + blockIdx.y * block size y;
int j = threadIdx.x + blockIdx.x * block size x;

__shared float sh mem[block size y][block size x]; //declare shared memory array

if (3 < w && 1 < h) |
sh mem[threadIdx.y] [threadIdx.x] = input[i*w+]]; //fill shared with values from global

__syncthreads () ; //wait for all thread in block
1 = threadIdx.x + blockIdx.y * block size y;

threadIdx.y + blockIdx.x * block size x;
if (3 < w && 1 < h) |

output [j*h+i] = sh mem[threadIdx.x] [threadIdx.y]; //store to global using shared memory

TU/e

Fourth hands-on session

* Go to folder 4-reduction fast, look at the source files
e Task:

e Implement the kernel for reduction again, this time in such a way that shared memory is used to sum
the per-thread partial sums into a single per-thread block partial sum

e Hints:

e The number of thread blocks does not depend on n. All threads from all blocks first iterate
(collectively) over the problem size (n) to obtain a per-thread partial sum

e Within the thread block the per-thread partial sums are to be combined to a
per-thread block partial sum

e Each thread block stores its partial sum to out array[blockIdx.x]

e The kernel is called twice, the second kernel is executed with only one thread block to combine all per-
block partial sums to a single sum

TU/e

Solution

__shared float sh mem[block size x]; //declare shared memory array
sh mem[ti] = sum; //store thread-local partial sum
__syncthreads () ; //wait for all threads in the block

#pragma unroll

for (unsigned int s=block size x/2; s>0; s/=2) { //iterate with s: 128, 64, 32, ..., 1
if (ti < s) | //threads with id < s
sh mem[ti] += sh mem[ti + s]; //add partial sum of thread ‘s’ away from ti
}
_syncthreads () ; //wait for all threads in the block
}
if (ti == 0) {
out array[blockIdx.x] = sh mem[0]; //store the per-block partial sum in global
}
T ——— ———————————

TU/e

Revisiting SCC detection (BFS)

Algorithm 4 gpU-FWDBFS with local caching

Require: number of iterations Nrlters
Ensure: Nrlters local BFS iterations from the given search frontier have been performed
extern volatile shared unsigned int cache ||
2: <initialise cache>
for (i <— Global-Threadld; i < |V'|; i <— i + NrOfThreads) do
4: srcinfo < offsets|i]
if INFRONTIER(s7cinfo) then

6: offsets|i] <~ MOVETOEXPLORED (srcinfo) .

EXPLORE(ST’CinfO) EXPLORE |nVO|Ves
8: for (iter <— 1; iter < Nrlters; iter ++) do : :

for j < Threadld; j < cachesize; j < j + BlockSize do storing state IDin

10: i < cachelj] shared memory

if ¢ # empty then
12: cacheli] <+ empty cache

srcinfo <— offsets|i]
14: if INFRONTIER(srcinfo) then
offsets[i] <— MOVETOEXPLORED (srcinfo)

16: EXPLORE(srcinfo)

TU/e

GPUexplore: explicit-state model
checking with GPUs

Joint work with Nathan Cassee, Dragan Bosnacki, Jan Heemstra,
Muhammad Osama, Thomas Neele, Rik van Spreuwel, Jaco van de Pol
(TACAS 2014, 2023, 2024, CAV 2016, FM 2016, ATVA 2016, GaM 2017,

SPIN 2023)

Correctness of Concurrent Systems

e Distributed, concurrent systems common-place, but very difficult to develop

e network applications, communication protocols, multi-threaded applications
e Systems may contain bugs such as deadlocks and livelocks

e Deadlock: computation not finished, but system cannot progress

e Livelock: system repeats computation steps without progressing

e Given a model of a concurrent system, these, and other functional properties can be checked
using model checking

e All states in which the system (design) can end up are inspected
e I|tis automatic

e Provides useful feedback (counter-examples)

TU/e

Model checking

P

Model of a (concurrent) system Functional requirement

Finite automata \ w / Temporal logic formula

a,
]
L]
]
a,
a,

.*
.
.
.
.
.
.
.
.
.
.
.*
.

6 TU/e

GPU accelerated explicit-state model checking

« GPUexplore version 1.0: TACAS 2014 (networks of LTSs)

« Verification of deadlock freedom and safety properties: 2015 (STTT)
« GPUexplore version 2.0: FM 2016

o + Partial-Order Reduction: ATVA 2016

()
’ o + Verification of suffix-bounded LTL formulae: CAV 2016
« GPUexplore version 3.0: TACAS & SPIN 2023 (Frontiers in HPC, 2024)
(\ o Accepts Finite Automata with data variables & arrays (EFAs)

« Uses GPU Tree Database for compact state storage
o Support for Linear-Time Temporal Logic (LTL): TACAS 2024

2016: 36 seconds instead of 1.5 hours!

(TACAS, CAV, ATVA, FM, Software Tools for Technology Transfer)

17 TU/e

GPU accelerated explicit-state model checking

o Contributions:

« First implementation and evaluation of a tree database for GPUs in the context
of GPU explicit-state model checking

o Comparison of using various hashing techniques
e First to implement Cleary compression for GPUs

« Novel combination of Cleary compression and Cuckoo hashing:
Cleary-Cuckoo

18

TU/e

GPUexplore overview

SM 0 SM n while there are unexplored states:
threads (successor generation) threads (successor generation)
0000000000000000ooo 0000000000000000000 - select set of unexplored states S
8600088806800880060 B0ooboobooooooooooo (mark them explored)
Soohsoomnonemdecone | .- | Bdocodecodnooonoons il
] e[le[a ef=[ef=l=|=f=[=|={s|=fst=] efefeta{xisisfafatatata e efafats - for all successors s’ of all s € S:
shared mem. (state cache) | shared mem. (state cache) | - store s’ in the (local) state cache
K

- sync. cache with global memory

»
>

[global memory

(state storage) |

19

¢ Global memory hash table
e Open / Closed
e Each Streaming Multiprocessor (SM) runs multiple thread blocks (512 threads)
e Each thread block has a (shared memory) cache:
e temporarily store succs.
e |ocal dupl. detection
¢ Fine-grained parallelism
e Groups of n threads are assigned to state vectors of size n (thread — process)

TU/e

GPUexplore 3.0 workflow

® SLCO (Simple Language of Communicating Objects): concurrent state machines
with data

e Given a model, generate code to execute the state machines

e One search iteration (of a thread block):

e Fetching unexplored states (place them in
shared memory work tile)

| (y4+1) % 2 * Explore the states, store successors in cache
y =1{y+1) %
e Storing successors in global hash table

b1 tw (DA 41) N2

Generic GPU Thread Thread
GPUEXPLORE b > block block
code worker worker
sLco Y _ GPUEXPLORE
model CUDA NVIDIA Compiler executable
code generator (Nvco)
Model specific \/\
GPUEXPLORE b
code P
Y | Global state storage

Tree database: store system states as binary trees

e With data, system states of SLCO models can be large

<A,B,C,D,E> <A'B,C'D,E> <A,B'\C,D,E'> <A'B,C,D,E'>

A'B El AB E'
C'D

C

e Laarman, Van de Pol, Weber, Parallel Recursive State Compression for Free, SPIN (2011)

e Laarman, Optimal compression of combinatorial state spaces, Innovations in Systems and Software
Engineering (2019)

21 TU/e

Unfolding recursion

e Recursion should always be avoided in a GPU program

e Requires a stack, but thread stacks are stored in (slow) global memory ,/ \

e And yet, storing trees is often implemented using recursion

store(n) {
addrl = store(n->left);
addr2 = store(n->right);
set_addrs(n, addrl, addr2);
write(n);

L

e Solution: write out recursion, possible because
for a given model, the tree structure is fixed

22

store(n) {

addrl = write(n->left->left);
set_addrs(n->left, addrl, null);
addrl = write(n->left);

addr2 = write(n->right);
set_addrs(n, addrl, addr2);
write(n);

TU/e

A thread block in GPUexplore 3.0

23

shared memory

1. Fetch root nodes to be explored from global memory, place them in the work tile
1. Some may have been claimed in previous search iteration

2. Distribute work over threads

3. Fetch the trees of the roots, store them in the cache

4. Threads produce successors and store them in the cache

5. When all threads are done, the cache is synchronised with the global hash table
1. Any new states may be claimed for the next iteration

When fetching trees, only store the leafs? No!

TU/e

Cache complete trees for efficient global memory storage of successors

24

a,cC

b

Tree compression becomes very time-efficient if storage of
new trees can be restricted to new nodes

a’, c

b

e Store all nodes of the trees to be explored in the cache

e Each node requires 64 bits for storage plus 32 bits for cache pointers

¢ Additional benefit: sharing (compression) of nodes in the cache

TU/e

Hash table

e Data structure to store elements
e Fast insertion and lookup

e |Ideal when the domain is too large to store all elements
. - hash
in memory, and it is expected that not all elements need T e buckels
to be stored 20

L~ 01 | Z21-0576
T~ 02| 3212732

e Can also be used to store (key, value) pairs — o4

e Hash function h maps element e to position h(e) Joka srtk - —

e Store values either separately, or physically
together with key

12
~—a 1& | I21-9€35
15

SANGTA Daa e

-—

e Involving values does not make hashing more

complicated, so | ignore them

e Collisions: h may hash keys e1, e2 to the same address solles Wkipeele

® h(el) = h(e2)

25 TU/e

Cuckoo hashing

¢ ldea: whenever there is a collision, evict the old element, store the new element, and move the
old element using another hash function

e Example: E collides with A, A is moved, collides with B, B is moved
¢ Benefit: constant time lookups
¢ Drawbacks:
® no constant time insertion, can lead to eviction chains
e Restrict chains in size, four hash functions are often enough to reach load factor of 90%
e GPUs: first hash function to be implemented (Alcantara et al., 2011)

@*\ A CB}W

cle|p| | ﬁ clElo| | [e| [c[AD]]lel cla|po] [BlE]
N(E) hi(A) h,(B)
h(A) hy(B)

Alcantara et al.: Building an Efficient Hash Table on the GPU (2012)

26

TU/e

State compression

e Can we use less space to store nodes?

e J.G. Cleary. Compact Hash Tables Using Bidirectional Linear Probing, IEEE Transactions on
Computers (1984)

e |dea: consider a node n requiring m bits to store
e Hash (bit scramble) n to h(n) (m bits)
e Split h(n) into h(n)oand h(n)1
e Store h(n): at address h(n)o
¢ To reconstruct stored nodes, h must be reversible:
e Get h(n)1 from h(n)o
e Combine h(n)o and h(n)x
* n=h(h(n))

27

TU/e

Cleary compression to compress roots

e But how to handle collisions?
e Cleary defined an elaborate scheme with linear probing, which forms clusters
e As nodes are moved, only roots of state trees can be compressed: use a root table and a non-root

(internal) table 0 1 2 3 4 5 6 7 8 9

rem 7 | 9 3| 4] 8| 8 Of 9

9, 9, Q4 9
Image from Van der Vegt and Laarman, A Parallel Compact Hash Table, MEMICS (2011)
e Group: consecutive list of remainders, associated with one home location
Cluster: consecutive groups, enclosed by empty positions
e v bit: corresponding address is a home location

c bit: last address of a group, followed by another group, or an empty address
Example stores 7, 9, 33, 34, 38, 48, 60, 69

Algorithm to restore elements: move to the left from the stored location,
count the number of set c bits, reach the left of the cluster, and count back the same number of set v bits

28 TU/e

Cleary compression to compress roots

rem 7 | 9 3| 4] 8| 8 0 9

ds g, g, 9
Image from Van der Vegt and Laarman, A Parallel Compact Hash Table, MEMICS (2011)

e Van der Vegt and Laarman: this scheme still works quite well for multi-threaded use
e Each cluster requires a lock, clusters must sometimes be relocated

e For a GPU, this is bad news:
e many global memory accesses, may not be aligned with (fixed-size) buckets
* locks

e Can we devise an alternative approach?

29

TU/e

Contribution: combine Cleary compression with Cuckoo hashing

e Collision handling in Cuckoo hashing: when a new node n must be stored at the address
where node m is stored

e Evict m, storen
e Rehash m with another hash function, and store m at new position

e When the maximum length of an eviction chain is reached, conclude that the table is full

20 TU/e

Contribution: combine Cleary compression with Cuckoo hashing

e Combination:
e Hash n using function ho: ho(n)
e Split ho(n) into ho(n)o and ho(n)1
e Try to store ho(n)1 plus hash function ID 0 at ho(n)o
e |f there is a collision with an hj(m)1
e Evict hi{m)1and store ho(n)1
e Combine hi(m)oand hi(m)1
e Retrieve m = hii(hi(m))
e Hash m using function hi:1: his1(m)

31

TU/e

Experimental results

32

e BEEM benchmarks (Brno), translated to SLCO

e Bu: buckets, Cmp: Cleary compression, cu: Cuckoo, i<n>: # iterations per kernel (function) launch

e No Cuckoo: 32 (reversible) hash functions; when collision occurs, rehash current element

30
28r
26¢

SLCO Models

cmp +il
cmp +cu +il

bu +il

cmp +bu+il

cmp + bu + cu + il
bu + 130

cmp +130

cmp + cu + 130
cmp + bu +130

cmp +bu+cu+i30 |

50 60 70 80 90

Millions of states per seconds

100

110 120 130

140

TU/e

Experimental results

Table 1: Millions of states per second for various reachability tools and configura-
tions. Pink cells: out of memory. Yellow cells: timeout. Green cell: best average.
0.M.: out of memory at initialisation. SU: speedup of (cMmpP + i30) vs. (LM-1).

Input CPU tools GPUEXPLORE + SLco Configurations

Model States | Sp-1 Sp-4 Lm-1 Lm-4 |Birs CR DO CMP CMP+BU CMP+CU CMP OMP*CU =
+il +il +il +il +1i30 +i30

adding.20+ 84,709,120 | 1.128 3.223 1.211 3.938 | 100 1.96 49.597 56.793 48.879 36.934 74.026 47.694 61x
adding.50+ 529,767,730 | 0.856 o.M. 1.354 5.356 | 100 1.96 48.403 103.872 77.243 49.625 131.444 57.968 97x
anderson.6 18,206,917 | 0.623 1.362 0.516 1.309 | 122 1.82 14.814 16.035 13.647 11.265 34.111 17.649 62x
anderson.7 538,699,029 [0.599 o.M. 0.448 1.583 | 141 2.75 9.309 21.192 14.244 10.426 22.326 10.435 41x e BEEM
at.5 31,999,440 | 0.646 1.495 0.653 1.880 | 85 1.86 19.894 29.158 23.633 18.204 38.457 21.375 59x benchmarks
at.6 160,589,600 | 0.454 0.869 0.695 2.387 | 85 1.90 17.901 38.275 27.275 19.498 38.418 20.359 55x
at.7 819,243,816 | 0.527 o.M. 0.666 2.372| 97 1.98 12.415 23.629 17.381 13.194 22.329 13.378 34x (DVE -> SLCO)
at.8+ 3,739,953,204 | 0.534 o.M. 0.555 1.817| 97 1.97 5.452 7.246 7.593 11.698 7.287 11.854 13x .
bakery.5 7,866,401 | 1.400 2.570 0.410 0.904 | 140 2.51 11.504 7.838 7.585 6.407 19.362 12.782 47x o Comparlson
bakery.7 29,047,471 | 1.228 2.592 0.580 1.618 | 140 2.49 13.236 9.361 9.021 7.698 29.783 17.456 51x With LTSmin
bakery.8 841,696,300 | 0.760 1.269 0.690 2.436 | 140 2.40 3.745 29.410 23.957 17.116 32.778 18.215 48x
elevator2.3 7,667,712 | 0.554 1.099 0.463 0.985| 189 3.96 4.890 3.259 3.185 2.817 6.261 4.827 14x and SPIN (]_-
elevator2.4 91,226,112 | 0.263 0.561 0.623 1.945| 213 3.97 3.025 3.746 2.907 3.087 3.267 2.703 Bx and 4-COF€S)
elevator2.5+ 1,016,070,144 | 0.189 o.M. 0.473 1.630| 317 5.95 1.540 1.871 1.545 1.520 1.839 1.491 4x
frogs.4 17,443,219 | 1.044 2.228 0.553 1.423| 219 3.49 8.423 10.253 8.686 7.767 11.549 8.168 21x o Cleary
frogs.5 182,772,126 | 0.531 1.048 0.751 2.630| 251 3.84 6.766 9.573 8.214 6.898 9.846 6.943 13x
lamport.6 8,717,688 | 1.277 1.375 0.490 1.096 | 96 1.91 11.813 5.126 5.225 4.697 27.966 19.335 57x compression
lamport.7 38,717,846 | 1.001 1.822 0.672 1.979 | 116 1.98 18.176 23.205 18.915 16.170 34.321 20.641 51x |
lamport.8 62,669,317 | 0.917 1.776 0.698 2.194 | 116 1.98 17.717 25.947 21.015 17.132 35.387 20.864 50x not on y more
loyd.2 362,880 | 1.278 0.758 0.255 0.497 | 90 1.05 7.339 4.204 4.220 3.723 3.243 3.930 13x compact, aIso
loyd.3 239,500,800 | 0.633 o.M. 0.650 2.338| 114 1.96 18.268 44.073 28.970 26.556 48.328 28.248 74x faster' (Bu+i1
mcs.5 60,556,519 | 0.706 0.615 0.453 1.489 | 148 2.97 14.504 24.498 19.537 14.710 29.635 15.912 65x .
mcs.6 332,544 | 1.240 0.244 0.181 0.331| 156 2.75 6.037 3.003 3.097 2.751 3.446 3.131 19x VS. Cmp+i1)
peterson.5 131,064,750 | 0.711 1.617 0.727 2.435| 140 2.98 16.034 31.975 21.394 17.813 32.331 16.681 42x
peterson.6 174,495,861 [0.852 0.756 0.720 2.451 | 140 2.98 15.503 32.725 22.975 17.198 34.902 17.030 45x ° CUCkOO S|OWS
peterson.7 142,471,098 | 0.683 1.496 0.652 2.269 | 175 2.63 13.077 25.667 18.603 13.868 26.183 13.120 37x
phils.6 14,348,906 | 0.208 0.422 0.240 0.670 | 150 1.49 4.410 7.458 5.528 4.789 7.084 4.543 30x down!
phils.7 71,934,773 | 0.179 0.297 0.246 0.764 | 151 1.49 3.585 5.702 4.762 4.064 5.382 3.885 22x
phils.8 43,046,720 | 0.160 0.361 0.243 0.788 | 160 1.49 4.842 9.151 6.987 5.119 8.973 5.089 37x
szymanski.5 79,518,740 | 0.665 1.571 0.535 1.815| 180 2.91 11.944 17.803 14.416 11.653 18.357 11.674 33x

Average 0.728 1.309 0.58 1.844 n/a 13.139 21.068 16.355 12.813 26.621 15.246 40x

3 TU/e

Conclusions

e GPU state space exploration with support for state machines with variables
e Code generation to execute model transitions
e For memory efficiency, store state vectors as binary trees
e Various optimisations applied
e Novel combination of Cleary compression and Cuckoo hashing
e Speedups up to 100x compared to state-of-the-art
¢ Future work: g
e Hashing: search for ideal speed / load factor balance
e Support for property verification (Linear Temporal Logic)
e Multi-GPU support
e Verification of probabilistic systems

34

Support for Linear-Time Temporal Logic

e Kripke structure to represent system behaviour
e Finite set of states & (including an initial state)
e Left-total transition relation - C & X &
e): S8 — 24Pis alabelling function

e Labels address state-local atomic propositions
eEg:x=0

35

TU/e

Automata-based LTL model checking

e Transform the negation of an LTL formula ¢ into a

Nondeterministic Biichi Automaton (NBA) B_, . q _Ip
0

e An NBA is an automaton with a finite set of accepting “
states @ (visualised with double borders)

true D

e A path through an NBA visits accepting states infinitely

often Negation of GF p

GF p: globally, eventually p holds

3 TU/e

Automata-based LTL model checking

— Compute the product of Kripke
@ p structure K and Bw

37

Automata-based LTL model checking

— Compute the product of Kripke
@ p structure K and B_,q,

Combine states of K and B_, ;:
Qo =1{(s,q) | s€ESANgE Q)

37

Automata-based LTL model checking

— Compute the product of Kripke
@ p structure K and B_,q,

) —>s’,q£>q’andK,S’I=q)

implies that(s, g) f>® (s',q")
(K, s" F @ means A(s') is a subset
of the APs satisfying ¢)

37

Automata-based LTL model checking

— Compute the product of Kripke
@ p structure K and B_,q,

Initial states: combination of the

initial state of K, and the initial
state(s) of Bw plus the states
reachable in BW via transitions
with a label suchthat K,s F ¢

37

Automata-based LTL model checking

37

Compute the product of Kripke
structure K and Bw

(s, q) is accepting iff g is accepting

Automata-based LTL model checking

e LTL model checking can be performed by solving the
emptiness problem

o A Kripke structure K satisfies LTL formula ¢ iff
KQ® Bﬁ(p is empty, i.e., has no (accepting) paths

e As paths are infinite, in a finite-state system, an
accepting path is a lasso consisting of:

e A finite sequence of transitions from an initial
state to an accepting state (s, q)

e A cycle including (s, g)

38

Automata-based LTL model checking

e State-of-the-art sequential algorithms are Depth-First Search
(DFS) based

* Nested Depth-First Search (NDFS) [Courcoubetis et al., 1992]:

e When backtracking over an accepting state in the first DFS,
start a second (nested) DFS

¢ When the second DFS reaches the stack of the first DFS, a
counter-example is found

e Algorithms using Strongly Connected Component detection
(for instance, with Tarjan’s algorithm, 1972)

e Multi-core NDFS [Laarman et al., 2011] (with AW):

e Multiple threads perform DFS-like searches (randomised)

39

Automata-based LTL model checking

e State-of-the-art sequential algorithms are Depth-First Search
(DFS) based

* Nested Depth-First Search (NDFS) [Courcoubetis et al., 1992]:

e When backtracking over an accepting state in the first DFS,
start a second (nested) DFS

¢ When the second DFS reaches the stack of the first DFS, a
counter-example is found

e Algorithms using Strongly Connected Component detection
(for instance, with Tarjan’s algorithm, 1972)

e Multi-core NDFS [Laarman et al., 2011] (with AW):

e Multiple threads perform DFS-like searches (randomised)

39 However ...

40

DFS is not suitable for GPUs — see GPUexplore:

SM 1 SM n

Threads (successor generation) Threads (successor generation)
) Y A I
0 I I
0 I I
OO0000000000000 0000000000000
OO0000000000000 0000000000000
OO00000000000mon OO00000000ooooc]
0 v Y o

{ Shared memory (state cache) { Shared memory (state cache)]

!

{

[Global memory (state hash table)

¢ Global memory hash table

e Open / Closed

while there are unexplored states do
- fetch a set of unexplored states S
to state cache (mark them explored)
- for all successors s'of all s € S do
- store s'in state cache
- synchronize state cache with the
global hash table

e Each Streaming Multiprocessor (SM) runs multiple thread blocks (512 threads)
e Each thread block has a (shared memory) cache:

e temporarily store succs.
e |ocal dupl. detection
¢ Fine-grained parallelism

e Groups of n threads are assigned to state vectors of size n (thread — process)

TU/e

So what about Breadth-First Search based LTL model checking?

e Algorithms initially developed for distributed model checking
e Back-Level Edges [Barnat et al., 2003] searches for transitions that close a cycle
e Maximal Accepting Predecessors (MAP) [Brim et al., 2004] is shown to perform better

e One-Way-Catch-Them-Young (OWCTY) [Cerna & Pelanek, 2003] uses topological sorting,
is not on-the-fly, i.e., cannot detect counter-example while constructing the state space

¢ A heuristic, incomplete version of MAP is added as first phase to OWCTY [Barnat et
al., 2009], so it may detect counter-examples early, if they exist

e Heuristic, incomplete version of MAP is also implemented in SPIN as the Piggyback
algorithm [Holzmann, 2012, Filippidis & Holzmann, 2014]

e Post-exploration versions of MAP and OWCTY have been implemented for the GPU
[Barnat et al., 2009, 2012]

a TU/e

So what about Breadth-First Search based LTL model checking?

e Algorithms initially developed for distributed model checking
e Back-Level Edges [Barnat et al., 2003] searches for transitions that close a cycle
e Maximal Accepting Predecessors (MAP) [Brim et al., 2004] is shown to perform better

e One-Way-Catch-Them-Young (OWCTY) [Cerna & Pelanek, 2003] uses topological sorting,
is not on-the-fly, i.e., cannot detect counter-example while constructing the state space

¢ A heuristic, incomplete version of MAP is added as first phase to OWCTY [Barnat et
al., 2009], so it may detect counter-examples early, if they exist

e Heuristic, incomplete version of MAP is also implemented in SPIN as the Piggyback
algorithm [Holzmann, 2012, Filippidis & Holzmann, 2014]

e Post-exploration versions of MAP and OWCTY have been implemented for the GPU
[Barnat et al., 2009, 2012]

Let us consider MAP, as it is both complete and on-the-fly

41

TU/e

42

MAP algorithm

o If the states in (O are totally ordered

e For instance, by comparing the hash table addresses at
which they are stored

¢ then if an accepting state is its own maximal accepting
predecessor, it is in a cycle

e In MAP, a reference to the maximal predecessor of a
state is propagated along the search
e However, if a state is not its own MAP, we do not know
anything

e Therefore, MAP works in rounds; in each round, states in @
for which it has been determined that they are not in a cycle
are no longer considered accepting ({sy, g;) is not in a cycle)

e As in each round, at least one state is no longer
considered accepting, MAP terminates

(S0 q1) > (52, 41) > (53, 41)

TU/e

42

MAP algorithm

o If the states in (O are totally ordered

e For instance, by comparing the hash table addresses at
which they are stored

¢ then if an accepting state is its own maximal accepting
predecessor, it is in a cycle

e In MAP, a reference to the maximal predecessor of a
state is propagated along the search
e However, if a state is not its own MAP, we do not know
anything

e Therefore, MAP works in rounds; in each round, states in @
for which it has been determined that they are not in a cycle
are no longer considered accepting ({sy, g;) is not in a cycle)

e As in each round, at least one state is no longer
considered accepting, MAP terminates

(S0 q1) > (52, 41) > (53, 41)

TU/e

42

MAP algorithm

o If the states in (O are totally ordered

e For instance, by comparing the hash table addresses at
which they are stored

¢ then if an accepting state is its own maximal accepting
predecessor, it is in a cycle

e In MAP, a reference to the maximal predecessor of a
state is propagated along the search
e However, if a state is not its own MAP, we do not know
anything

e Therefore, MAP works in rounds; in each round, states in @
for which it has been determined that they are not in a cycle
are no longer considered accepting ({sy, g;) is not in a cycle)

e As in each round, at least one state is no longer
considered accepting, MAP terminates

(S0 q1) > (52, 41) > (53, 41)

TU/e

42

MAP algorithm

o If the states in (O are totally ordered

e For instance, by comparing the hash table addresses at
which they are stored

¢ then if an accepting state is its own maximal accepting
predecessor, it is in a cycle

e In MAP, a reference to the maximal predecessor of a
state is propagated along the search
e However, if a state is not its own MAP, we do not know
anything

e Therefore, MAP works in rounds; in each round, states in @
for which it has been determined that they are not in a cycle
are no longer considered accepting ({sy, g;) is not in a cycle)

e As in each round, at least one state is no longer
considered accepting, MAP terminates

(S0 q1) > (52, 41) > (53, 41)

TU/e

42

MAP algorithm

o If the states in (O are totally ordered

e For instance, by comparing the hash table addresses at
which they are stored

¢ then if an accepting state is its own maximal accepting
predecessor, it is in a cycle

e In MAP, a reference to the maximal predecessor of a
state is propagated along the search
e However, if a state is not its own MAP, we do not know
anything

e Therefore, MAP works in rounds; in each round, states in @
for which it has been determined that they are not in a cycle
are no longer considered accepting ({sy, g;) is not in a cycle)

e As in each round, at least one state is no longer
considered accepting, MAP terminates

(S0 q1) > (52, 41) > (53, 41)

TU/e

42

MAP algorithm

o If the states in (O are totally ordered

e For instance, by comparing the hash table addresses at
which they are stored

¢ then if an accepting state is its own maximal accepting
predecessor, it is in a cycle

e In MAP, a reference to the maximal predecessor of a
state is propagated along the search
e However, if a state is not its own MAP, we do not know
anything

e Therefore, MAP works in rounds; in each round, states in @
for which it has been determined that they are not in a cycle
are no longer considered accepting ({sy, g;) is not in a cycle)

e As in each round, at least one state is no longer
considered accepting, MAP terminates

(S0 q1) > (52, 41) > (53, 41)

TU/e

42

MAP algorithm

o If the states in (O are totally ordered

e For instance, by comparing the hash table addresses at
which they are stored

¢ then if an accepting state is its own maximal accepting
predecessor, it is in a cycle

e In MAP, a reference to the maximal predecessor of a
state is propagated along the search

e However, if a state is not its own MAP, we do not know
anything

e Therefore, MAP works in rounds; in each round, states in @
R/ for which it has been determined that they are not in a cycle
are no longer considered accepting ({sy, g;) is not in a cycle)

{52, q1) e As in each round, at least one state is no longer

considered accepting, MAP terminates

(S0 q1) > (52, 41) > (53, 41)

TU/e

MAP algorithm

o If the states in (O are totally ordered

e For instance, by comparing the hash table addresses at
which they are stored

¢ then if an accepting state is its own maximal accepting
predecessor, it is in a cycle

\ e In MAP, a reference to the maximal predecessor of a
state is propagated along the search
e However, if a state is not its own MAP, we do not know
(5 1) anything

“J e Therefore, MAP works in rounds; in each round, states in @
R/ for which it has been determined that they are not in a cycle
are no longer considered accepting ({sy, g;) is not in a cycle)

(2 1) e As in each round, at least one state is no longer
considered accepting, MAP terminates

(S0 q1) > (52, 41) > (53, 41)

42

TU/e

42

MAP algorithm

o If the states in (O are totally ordered

e For instance, by comparing the hash table addresses at
which they are stored

¢ then if an accepting state is its own maximal accepting
predecessor, it is in a cycle

e In MAP, a reference to the maximal predecessor of a
state is propagated along the search
e However, if a state is not its own MAP, we do not know
anything

e Therefore, MAP works in rounds; in each round, states in @
for which it has been determined that they are not in a cycle
are no longer considered accepting ({sy, g;) is not in a cycle)

e As in each round, at least one state is no longer
considered accepting, MAP terminates

(S0 q1) > (52, 41) > (53, 41)

TU/e

42

MAP algorithm

o If the states in (O are totally ordered

e For instance, by comparing the hash table addresses at
which they are stored

¢ then if an accepting state is its own maximal accepting
predecessor, it is in a cycle

e In MAP, a reference to the maximal predecessor of a
state is propagated along the search

e However, if a state is not its own MAP, we do not know
anything

e Therefore, MAP works in rounds; in each round, states in @
R/ for which it has been determined that they are not in a cycle
are no longer considered accepting ({sy, g;) is not in a cycle)

e As in each round, at least one state is no longer
considered accepting, MAP terminates

(S0 q1) > (52, 41) > (53, 41)

TU/e

42

MAP algorithm

o If the states in (O are totally ordered

e For instance, by comparing the hash table addresses at
which they are stored

¢ then if an accepting state is its own maximal accepting
predecessor, it is in a cycle

e In MAP, a reference to the maximal predecessor of a
state is propagated along the search

e However, if a state is not its own MAP, we do not know
anything
e Therefore, MAP works in rounds; in each round, states in @
R/ for which it has been determined that they are not in a cycle
are no longer considered accepting ({sy, g;) is not in a cycle)

e As in each round, at least one state is no longer
considered accepting, MAP terminates

(S0 q1) > (52, 41) > (53, 41)

TU/e

42

MAP algorithm

o If the states in (O are totally ordered

e For instance, by comparing the hash table addresses at
which they are stored

¢ then if an accepting state is its own maximal accepting
predecessor, it is in a cycle

e In MAP, a reference to the maximal predecessor of a
state is propagated along the search

e However, if a state is not its own MAP, we do not know
anything

e Therefore, MAP works in rounds; in each round, states in @
for which it has been determined that they are not in a cycle
are no longer considered accepting ({sy, g;) is not in a cycle)

e As in each round, at least one state is no longer
considered accepting, MAP terminates

(S0 q1) > (52, 41) > (53, 41)

TU/e

42

MAP algorithm

o If the states in (O are totally ordered

e For instance, by comparing the hash table addresses at
which they are stored

¢ then if an accepting state is its own maximal accepting
predecessor, it is in a cycle

\ e In MAP, a reference to the maximal predecessor of a
state is propagated along the search
e However, if a state is not its own MAP, we do not know
(50> 41) anything

e Therefore, MAP works in rounds; in each round, states in @
R/ for which it has been determined that they are not in a cycle
are no longer considered accepting ({sy, g;) is not in a cycle)

e As in each round, at least one state is no longer
considered accepting, MAP terminates

(S0 q1) > (52, 41) > (53, 41)

TU/e

42

MAP algorithm

o If the states in (O are totally ordered

e For instance, by comparing the hash table addresses at
which they are stored

¢ then if an accepting state is its own maximal accepting
predecessor, it is in a cycle

e In MAP, a reference to the maximal predecessor of a
state is propagated along the search

e However, if a state is not its own MAP, we do not know
anything

e Therefore, MAP works in rounds; in each round, states in @
for which it has been determined that they are not in a cycle
are no longer considered accepting ({sy, g;) is not in a cycle)

e As in each round, at least one state is no longer
considered accepting, MAP terminates

(S0 q1) > (52, 41) > (53, 41)

TU/e

42

MAP algorithm

o If the states in (O are totally ordered

e For instance, by comparing the hash table addresses at
which they are stored

¢ then if an accepting state is its own maximal accepting
predecessor, it is in a cycle

e In MAP, a reference to the maximal predecessor of a
state is propagated along the search

e However, if a state is not its own MAP, we do not know
anything

e Therefore, MAP works in rounds; in each round, states in @
for which it has been determined that they are not in a cycle
are no longer considered accepting ({sy, g;) is not in a cycle)

e As in each round, at least one state is no longer
considered accepting, MAP terminates

(S0 q1) > (52, 41) > (53, 41)

TU/e

MAP algorithm

o If the states in (O are totally ordered

e For instance, by comparing the hash table addresses at
which they are stored

¢ then if an accepting state is its own maximal accepting
predecessor, it is in a cycle

\ e In MAP, a reference to the maximal predecessor of a
state is propagated along the search
e However, if a state is not its own MAP, we do not know
(50> 41) anything

“J e Therefore, MAP works in rounds; in each round, states in @
R/ for which it has been determined that they are not in a cycle
are no longer considered accepting ({sy, g;) is not in a cycle)

{5091 e As in each round, at least one state is no longer
considered accepting, MAP terminates

(S0 q1) > (52, 41) > (53, 41)

42

TU/e

42

MAP algorithm

o If the states in (O are totally ordered

e For instance, by comparing the hash table addresses at
which they are stored

¢ then if an accepting state is its own maximal accepting
predecessor, it is in a cycle

e In MAP, a reference to the maximal predecessor of a
state is propagated along the search

e However, if a state is not its own MAP, we do not know
anything

e Therefore, MAP works in rounds; in each round, states in @
PV for which it has been determined that they are not in a cycle
are no longer considered accepting ({sy, g;) is not in a cycle)

e As in each round, at least one state is no longer
considered accepting, MAP terminates

(S0 q1) > (52, 41) > (53, 41)

TU/e

42

MAP algorithm

@

o If the states in (O are totally ordered

e For instance, by comparing the hash table addresses at
which they are stored

¢ then if an accepting state is its own maximal accepting
predecessor, it is in a cycle

e In MAP, a reference to the maximal predecessor of a
state is propagated along the search

e However, if a state is not its own MAP, we do not know
anything
e Therefore, MAP works in rounds; in each round, states in @
PV for which it has been determined that they are not in a cycle
are no longer considered accepting ({sy, g;) is not in a cycle)

{52, q1) e As in each round, at least one state is no longer

considered accepting, MAP terminates

(S0 q1) > (52, 41) > (53, 41)

TU/e

MAP algorithm

42

@

($2,q1)

(82, 91)

(S0 q1) > (52, 41) > (53, 41)

o If the states in (O are totally ordered

e For instance, by comparing the hash table addresses at
which they are stored

¢ then if an accepting state is its own maximal accepting
predecessor, it is in a cycle

e In MAP, a reference to the maximal predecessor of a
state is propagated along the search
e However, if a state is not its own MAP, we do not know
anything

e Therefore, MAP works in rounds; in each round, states in @
for which it has been determined that they are not in a cycle
are no longer considered accepting ({sy, g;) is not in a cycle)

e As in each round, at least one state is no longer
considered accepting, MAP terminates

TU/e

However, MAP is very conservative

43

TU/e

43

However, MAP is very conservative

e Let us consider a BFS

* The r; and g; states are tuples
eForall0<i<j<ng;<g,
e p(q) is current reference of g

e At the end of a round, every g € @

with p(g) # € and p(g) # g should
be reopened in the next round

TU/e

43

However, MAP is very conservative

e Let us consider a BFS

* The r; and g; states are tuples
eForall0<i<j<ng;<g,
e p(q) is current reference of g

e At the end of a round, every g € @

with p(g) # € and p(g) # g should
be reopened in the next round

TU/e

43

However, MAP is very conservative

e Let us consider a BFS

* The r; and g; states are tuples
eForall0<i<j<ng;<g,
e p(q) is current reference of g

e At the end of a round, every g € @

with p(g) # € and p(g) # g should
be reopened in the next round

TU/e

43

However, MAP is very conservative

e Let us consider a BFS

* The r; and g; states are tuples
eForall0<i<j<ng;<g,
e p(q) is current reference of g

e At the end of a round, every g € @

with p(g) # € and p(g) # g should
be reopened in the next round

TU/e

43

However, MAP is very conservative

e Let us consider a BFS

* The r; and g; states are tuples
eForall0<i<j<ng;<g,
e p(q) is current reference of g

e At the end of a round, every g € @

with p(g) # € and p(g) # g should
be reopened in the next round

TU/e

43

However, MAP is very conservative

e Let us consider a BFS

* The r; and g; states are tuples
eForall0<i<j<ng;<g,
e p(q) is current reference of g

e At the end of a round, every g € @

with p(g) # € and p(g) # g should
be reopened in the next round

TU/e

43

However, MAP is very conservative

€ 3 Qq2 Q2 q1

e Let us consider a BFS

* The r; and g; states are tuples
eForall0<i<j<ng;<g,
e p(q) is current reference of g

e At the end of a round, every g € @

with p(g) # € and p(g) # g should
be reopened in the next round

TU/e

43

However, MAP is very conservative

e Let us consider a BFS

* The r; and g; states are tuples
eForall0<i<j<ng;<g,
e p(q) is current reference of g

e At the end of a round, every g € @

with p(g) # € and p(g) # g should
be reopened in the next round

TU/e

43

However, MAP is very conservative

e Let us consider a BFS

* The r; and g; states are tuples
eForall0<i<j<ng;<g,
e p(q) is current reference of g

e At the end of a round, every g € @

with p(g) # € and p(g) # g should
be reopened in the next round

e Here, MAP requires n rounds

e Can we do better?
e Yes, Hitchhiking

TU/e

44

However, MAP is very conservative

e Let us consider a BFS

* The r; and g; states are tuples
eForall0 <i<j<n g <g;
e p(q) is current reference of g

e At the end of a round, every g € @

with p(g) # € and p(g) # g should
be reopened in the next round

e Here, MAP requires n rounds
e Can we do better?

e Yes, Hitchhiking
Observation: as the propagation of g, was not interrupted,

there is no need to propagate it again in the next round

TU/e

Hitchhiking

e Keep track of a set of active states & and a set of interrupted states F
e Initially, & = @, and & strictly becomes smaller after each round
e Initially, & = @, states are added to # when ‘their’ search is interrupted

e When a state ¢ € @ is reached for the first time, we set p(g) = g

r-search is interrupted;

add 7 to &

. TU/e

Hitchhiking

e Keep track of a set of active states & and a set of interrupted states F
e Initially, & = @, and & strictly becomes smaller after each round
e Initially, & = @, states are added to # when ‘their’ search is interrupted

e When a state ¢ € @ is reached for the first time, we set p(g) = g

?
D7 r-search is interrupted;
i add 7to F
add to F 4

.6 TU/e

Hitchhiking

e Keep track of a set of active states & and a set of interrupted states F
e Initially, & = @, and & strictly becomes smaller after each round

e Initially, & = @, states are added to # when ‘their’ search is interrupted

e When a state ¢ € @ is reached for the first time, we set p(g) = g

r-search is interrupted;

However, do not add 7 to #

If g’ = ¥, the g-search may detect cycle
e If g-search is interrupted, either g’is
added to &, or same situation applies
for g’ (but as cycle is finite and & is
totally ordered, this cannot be applicable
for all involved states in &)

47 TU/e

Hitchhiking — Postprocessing at end of round

e (0: set of open states (to be explored)

if # # @ then
for all 7 € Qg do in parallel
if r € o then
if r € F and p(7) # Frthen O « O U {7}
else of «— A\{r}
if r € F then & « F\{r}
if r € o thenp(r) « relsep(i) « ¢

48

TU/e

Hitchhiking — Postprocessing at end of round

RO ‘

‘3I

e (0: set of open states (to be explored)

if 7 # @ then '>T addwF
for all 7 € Qg do in parallel ? i T
if 7 € of then AT E @ o

if 7 € F and p(¥) # rthen O « O U {7} e . \';_ \
.

else o « A\ {7}
if r € F then & « F\{r}
if 7 € of then p(7) « relse p(i) « ¢

If p(¥) was never updated,

E—

then 7 cannot be in a cycle!

. TU/e

Hitchhiking implementation in GPUexplore 3.0

CPU

Spot (Iti2tgba)

i';gg CUDA
LTL code generator
formula

Generic
CUDA code

(Hitchhiking)

O

Model-specific
CUDA code (next-

GPU

state functions)

O

-~]
g 1

State Space Exploration with on-the-fly Hitchhiking

Thread block Thread block

OO00000000r I O

0 0000000000L

[]
[]
[]
[]
[]
[]
[]
[Shared memory (work tile)]

[]
[]
[]
[]
[]
[]
[Shared memory (work tile) }

b b

{

Global memory (state hash table)

e Spot library used to generate NBAs [Duret-Lutz et al., 2022]
e CUDA C++ code generator developed in Python + TextX + Jinja2

49

TU/e

Experiments

e Compare Hitchhiking with MAP on GPU
e Existing GPU MAP implementation (not on-the-fly) no longer maintained
e We added MAP (on-the-fly) to GPUexplore 3.0
e Compare Hitchhiking with state-of-the-art CPU algorithms
e 2-core NDFS in the SPIN model checker [Holzmann & Bosnacki, 2007]
e n-core Combined NDFS (CNDFS) in the LTSmin model checker [Evangelista et al., 2012]

 All tools use state compression, but imprecise methods (bit state hashing, ...) have been
disabled

e Benchmarks: 32 (translated) models from the BEEM benchmark suite [Peldanek, 2007]
e Some scaled up to make them more interesting for parallel model checking
e State spaces ranging between 150,000 and 1.2 billion states
e Per model, 3 LTL formulae were checked

50 TU/e

Experiments

1,750 Out of resources 2-core Spin 2001 —— 32'-c0r? I.JTSmin
‘g 1,500 *x + 32-core LTSmin B8 —*— Hitchhiking on GPU
= 12500 % x Map on GPU =150
£ 1,000 ; e] =
i | % # Hitchhiking on GPU | € 100
g 750 % =
& 500 N
| X X + |
OMM“-M D I T S T - 0f ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80
Verified models with all properties Successfully generated products

¢ Used hardware:
e GPU: Titan RTX GPU: 4,608 cores (1.35 GHz), 24 GB memory, 2018
e Generated code compiled with CUDA C++ 12.2 compiler
e CPU: 32-core AMD EPYC 7R13 (2.65 GHz), 2021
e Out of memory set at 32 GB

51 TU/e

52

Table 1: Runtime (sec.) of LTL checking on GPU vs. contemporary multi-core tools.
m.: Out of memory. t.: Time out.

@ is satisfied.
HITCHHIKING was faster than SPIN and LTSMIN. Significantly worse MAP times (at least 0.1 second slower) are marked V.

: Model was altered to remove deadlocks.
@ is not satisfied. X: Incorrect result. Times in bold indicate that

SPIN (2-core NDFS)

LTSMIN (1-core CNDFS)

LTSMIN (32-core CNDFS)

GPUEXPLORE HITCHHIKING

GPUEXPLORE MaAP

Model
1 P2 L3 L1 P2 3 1 P2 L3 1 P2 $3 1 P2 P3

adding.20+ 103 104 106 110.7 110.8 112.8 14.65 14.47 14.2 0.88 0.88 0.899 0.879 0.91 0.898
adding.50+ m. m. m. 677.5 673.3 667.2 42.24 43.55 44.34 3.66 3.67 3.679 3.663 3.684 3.679
anderson.6 118 0.17 155 162.4 2.62 195.2 37.43 0.02 41.95 4.57 0.168 3.238 | v 19.704 0.168 v 12.85
anderson.7 m. 3.9 m. m. 50.63 m. m. 9.07 m. 219 1.963 148.39 Vv 1275 v 2.381 Vv 865.2
anderson.8 m. 3.84 m. m. 29.11 m. m. 0.08 m. 1531 0.945 m. Vv t. v 2.062 m.

at.5 0.06 0.06 92.5 0.001 0.001 120.3 0.001 0.001 22.53 0.144 0.001 0.6 0.145 0.001 0.602
at.6 0.06 0.06 m. 0.001 0.001 911.1 0.001 0.01 73.74 0.148 0.001 2.706 0.148 0.001 2.708
at.7 0.06 0.06 m. 0.001 0.001 m. 0.001 0.001 m. 0.165 0.001 19.63 0.167 0.001 19.67
bakery.5 0.05 0.05 0.04 0.001 0.001 0.001 0.01 0.001 0.001 0.042 0.042 0.041 0.042 0.045 0.044
bakery.6 0.05 0.05 0.05 0.001 0.001 0.001 0.01 0.001 0.001 0.042 0.043 0.047 0.043 0.044 0.068
bakery.7 0.04 0.05 0.05 0.001 0.001 0.001 0.01 0.001 0.001 0.041 0.042 0.042 0.043 0.042 0.042
elevator2.3 3.21 5.87 34.9 2.5 0.01 34.24 0.46 0.04 11.28 1.63 1.965 0.608 1.678 Vv 2.946 0.633
elevator2.4+ 32.5 66.9 m. 33.94 0.001 570.1 18.21 0.05 76.64 32.39 11.18 9.083 Vv 43.66 VvV 67.57 Vv 9.432
frogs.4 0.07 39.5 40.6 0.001 43.16 42.23 0.001 8.65 8.42 0.052 0.69 0.698 0.062 0.698 0.699
frogs.5 0.05 m. m. 0.001 1141 1105 0.01 66.27 63.75 0.046 26.1 26.4 0.046 Vv 33.6 Vv 34.49
lamport.6 0.05 0.05 0.04 0.001 0.001 0.001 0.01 0.01 0.001 0.043 0.043 0.042 0.046 0.043 0.042
lamport.7 0.05 0.05 36.4 0.01 0.01 289.7 0.01 0.001 33.2 0.192 0.204 17.02 0.193 0.204 Vv 95.82
lamport.8 0.05 0.05 0.05 0.001 0.001 0.001 0.01 0.001 0.001 0.043 0.042 0.042 0.043 0.043 0.042
loyd.3 m. m. m. m. m. m. m. m. m. 2.59 2.6 2.627 2.59 2.6 2.631
mcs.5 0.12 0.12 233 0.001 1.02 m. 0.01 0.001 89.8 0.219 0.229 9.915 0.22 0.229 Vv 72.56
peterson.5 0.12 0.12 m. 0.001 0.001 1449 0.02 0.02 109.9 3.425 2.094 75.78 3.425 2.094 v 348.6
peterson.6 0.07 0.07 60.6 0.001 0.001 m. 0.01 0.01 189.4 0.54 0.543 58.85 0.565 0.54 Vv 348
peterson.7 0.18 0.17 m. 0.04 0.001 1232 0.06 0.04 92.64 1.202 0.96 169.4 1.198 0.961 Vv 654.2
phils.6 1.1 1.36 164 0.001 0.001 190.6 0.001 0.001 173.1 0.041 0.031 1.156 0.042 0.042 1.155
phils.7 5.99 10.3 m. 0.001 0.02 m. 0.001 0.001 m. 0.001 0.031 5.156 0.001 0.034 v 5.228
phils.8 3.09 2.58 m. 0.001 0.01 m. 0.01 0.001 m. 0.001 0.026 2.443 0.041 0.028 2.484
telephony.4 39.7 0.05 42.4 59.81 0.001 X 12.51 0.001 X 0.44 0.051 0.265 0.442 0.052 0.265
telephony.5 m. 0.05 m. m. 0.001 X 264.5 0.01 X 28.5 0.066 14.6 28.45 0.067 v 14.91
telephony.6 23.3 0.05 m. 0.04 0.001 X 0.05 0.01 X 0.314 0.057 26.56 0.324 0.058 Vv 26.63
szymanski.5 25.1 24.3 152 10.62 0.01 268 0.01 0.01 25.93 0.287 0.555 2.363 v 1.122 0.555 2.388
leader_filters.5 0.05 0.05 5.34 0.001 0.001 7.46 0.01 0.01 3.71 0.058 0.07 0.145 0.054 0.07 0.151
leader_filters.6 0.05 0.05 169 0.001 0.001 583 0.01 0.01 40.93 0.051 0.045 5.294 0.051 0.045 5.336

TU/e

Conclusions and future work

e We presented Hitchhiking, a new algorithm for massively parallel LTL model checking
e Based on MAP, but keeps track of search interruptions

e Implemented in GPUexplore 3.0
e Speedups up to 150x compared to 32-core CNDFS LTSmin

e First time GPU accelerated LTL model checking has been applied to state spaces with
more than a billion states

¢ Future work:
e Shortest counter-example construction
e Other temporal logics (CTL)
e Probabilistic Model Checking (NWO project)

53

TU/e

Beyond the CUDA Programming model

Implementation of model

TU/e

Implementation of model

CUDA Graphics Card
Thread ? - Processor
????? %% %% Mul
Block — ultiprocessor
]
wa HHE . [EEEEEE o

How are threads actually scheduled?

TU/e

Warps as Scheduling Units

e Each block is executed as a set of 32-thread
warps

e Warps are scheduling units in SMs

e The threads in a warp execute in lockstep:
SIMT (single instruction multiple threads)

e Be aware of warps when optimising code, to
limit:
e thread divergence

e uncoalesced memory accesses

[Images by Ming Yang]

l Warp 0 l Warp 1 l Warp 2 l

i B B8 B

Streaming Multiprocessor (SM)
Pool of warps

Time (cycle)

TU/e

Thread divergence

e |f executions of threads in a warp branch in different directions, they have to wait for each
other

TU/e

Thread divergence

e If executions of threads in a warp branch in different directions, they have to wait for each
other

If C then| TLINTTITITTITTITTITTITITTIITIT

TU/e

Thread divergence

e If executions of threads in a warp branch in different directions, they have to wait for each
other

If C then'

TU/e

Thread divergence

e If executions of threads in a warp branch in different directions, they have to wait for each
other

P e
5 Tm—m——

TU/e

Thread divergence

e Avoid identical computations in different branches

1f(tid % 2) { float t = 1.0f/tid;
s += 1.0f/tid; if(tid % 2) {
} S += t;
else { }
s -= 1,0f/tid; else {
} s -= t;
}

TU/e

Thread divergence and program correctness

e Synchronisation barriers should be called by either none or all of the threads
e They cannot be called in a divergent block

e if(p) A
,:',:'.Syn«_ here?)
:> ~_syncthreads();
} if(p) {
)

TU/e

Uncoalesced memory accesses

* Memory accesses of threads in a warp are combined as much as possible

TU/e

Uncoalesced memory accesses

e Memory accesses of threads in a warp are combined as much as possible

X |

serialised to 2 accesses, each fetching 16 entries

TU/e

Uncoalesced memory accesses

e Memory accesses of threads in a warp are combined as much as possible

X

serialised to 2 accesses, each fetching 16 entries

X

only 1 access

TU/e

Occupancy

e Occupancy = # of active warps / Maximum number of resident warps per SM

Compute Capabilities
Technical Specifications 2x 3.03.2353.7505253

Maximum number of resident
warps per SM

e Occupancy limiters:
e Register usage
e Shared memory usage
e Block size

[Based on slides by Ming Yang]

TU/e

Occupancy limiter: Register usage

e Example 1 (capability = 3.0)
e Kernel uses 21 registers per thread
e # of active threads = 65536 / 21 = 3120
e #ofwarps=3120/32=97
e >2048 /32 =64, therefore occupancy of 100%

Compute Capabilities
Technical Specifications 2x 3.0 3235375052 53

Maximum number of 32-bit

registers per thread block

Maximum number of resident
threads per SM

TU/e

Occupancy limiter: Register usage

e Example 2 (capability = 3.0)

e Kernel uses 64 registers per thread

e # of active threads = 65536 / 64 = 1024
e #ofwarps=1024/32=32
e Occupancy =32 /64 =50%

Compute Capabilities
Technical Specifications 2x 3.03235375052 53

Maximum number of 32-bit

registers per thread block

Maximum number of resident
threads per SM

TU/e

Occupancy limiter: Shared memory

e Example 1 (capability = 3.0)
e Kernel uses 16 bytes shared memory per thread
e # of active threads = 49152 / 16 = 3072

e #ofwarps=3072/32=96

e > 64, therefore occupancy of 100%

Compute Capabilities
Technical Specifications 2x 3.0 3235 37505253

Maximum amount of shared
memory per SM

Maximum number of resident
threads per SM

Maximum number of resident

warps per SM TU/e

Occupancy limiter: Shared memory

e Example 1 (capability = 3.0)
e Kernel uses 32 bytes shared memory per thread
e # of active threads = 49152 /32 = 1536

e f#ofwarps=1536/32=48

e Occupancy =48 /64 =75%

Compute Capabilities
Technical Specifications 2x 3.0 3235 37 505253

Maximum amount of shared
memory per SM

Maximum number of resident
threads per SM

Maximum number of resident

warps per SM TU/e

Occupancy

e Do we want higher occupancy?
e Yes. Latency can be hidden better when more threads are running

e Isoccupancy a metric of performance?
e No! Itis just one of the contributing factors
e There are examples where lowering the occupancy positively affects performance
e Matrix multiplication and FFT

TU/e

Fifth hands-on session

e Go to folder 5-matrix-sum, look at the source files
e Task:

e Restructure the input data, and rewrite the kernel for matrix row summation, to achieve coalesced
memory accesses

e Hints:
e To each row, one thread is assigned

e Consider which elements in the input array need to be accessed by a single thread

TU/e

Hint

TU/e

Revisiting BFS Consider stepsize = 32

Require: initial state is in search frontier
Ensure: if state ¢ is in search frontier, then the successors of 7 are added to search frontier,
and ¢ is moved to the explored set
stepsize <— 1
2: for (i < Global-Threadld;i < |V|;i < i + NrOfThreads) do
srcinfo <— offsets|i]

4: if INFRONTIER(srcinfo) then
offsets[i] < MOVETOEXPLORED(srcinfo)
6: offset1 < GETOFFSET(srcinfo)
offset2 <— GETOFFSET(offsets[i + stepsize — (i mod stepsize)])
8: for (j < offsetl; j < offset2; j < j + stepsize) do
t < transl[j]
10: if ¢ # empty then
tgtstate < GETTGTSTATE(?)
12: tgtinfo < offsets|tgtstate]
if 1sNEw(tgtinfo) then
14: offsets[tgtstate] < ADDTOFRONTIER(tgtinfo)

TU/e

Suggestion for data structures

e Design such that accesses are coalesced most of the time
e For instance, often better to have structure of arrays than array of structures

struct Pt { struct Pt {
float x; float x[N];
float y; float y[N];
float z; float z[N];

I 3

struct Pt myPts[N]; struct Pt myPts;

TU/e

Suggestion for data structures

* Design such that accesses are coalesced most of the time
e For instance, often better to have structure of arrays than array of structures

struct Pt { struct Pt {
float x; float x[N];
float y; float y[NI;
float z; float z[N];

J; I

struct Pt myPts[N]; struct Pt myPts;

Consider access pattern when each thread ti

computes myP1ts[ti].x + myP1s[ti].y + myPts]ti].z
TU/e

Inter-thread/inter-warp communication

e Barriers(syncthreads ())

e [Easytouse

e Coarse-grained at block level
e Atomics

e Fine-grained

e (Can be used to implement wait-free algorithms
e Communication via memory

e Beware of memory consistency

[Based on slides by Sylvain Collange]

TU/e

Atomics

e Read, modify, write in one operation
e Cannot be interleaved with accesses of other threads
Available operators (both 32-bit and 64-bit):

e atomicAdd, atomicSub, atomicInc, atomicDec
e atomicMin, atomicMax

e atomicExch, atomicCAS

e atomicAnd, atomicOr, atomicXor

Both for global and shared memory

Beware for performance!

e Atomic operations to the same memory address are serialised

TU/e

Example: reduction

e Each block performs local reduction of data, atomics are used to accumulate the result

Block 0

Block 1

Block 2

CITT]

E

]

el

CLLT]

o
it

Block n

Global memory

accumulator

C O
u

, Y .
—» atomicAdd |
—»_atomicAdd |
— alomicAdd |

_ Y .
» atomicAdd |

Y
Result

TU/e

Warp-synchronous programming

e Threads in a warp run synchronously, therefore no need to synchronise them explicitly

e Warps can be treated as threads with SIMD capabilities, similar to threads on a Xeon Phi, for
instance

e Special intra-warp instructions can be used to efficiently exchange data among threads in a
warp

TU/e

Warp vote instructions

« p2 = all(pl)
harizontal AND between predicates pl
of all threads in the warp

* p2 = any(pl)
CR between all p1

ATATITalAT ll[lllﬂl 51 F1E61 FU6N

e n = ba'[]_gt(p) 01112 131

Sel bit 7 of integer n

to value of p for thread /i 10101110001010
1.e. get bit mask as an integer

0x28EA=0010100011101010

S~ -

Like __syncthreads_{and,or} for a warp ~

Use: take control decisions for the whole warp warp

TU/e

Warp shuffle instructions

Exchange data between lanes

a shfl(v, 1)
Gel value of thread i in the warp

+ Use: 32 concurrent lookups
In a 32-entry table

+ Use: arbitrary permutation... "~ ~ —
s shfl up(v, i) = shfl(v, tid-i), warp
shfl down(v, 1) = shfl(v, tid+i)

Same, indexing relative to current lane
+ Use: neighbor communication, shift

» shfl xor(v, 1) = _shfl(v, tid ~ i)
+ Use: exchange data pairwise: “butterfly”

TU/e

Other features

e NVIDIA GPUs implement a relaxed memory consistency model
e Thread fences to enforce explicit ordering of memory accesses
e Declare shared variables as volatile

e syncthreads () implies thread fence

e New features are added frequently

e Forinstance, CUDA 9 (end 2017) introduced cooperative groups

TU/e

Optimising Code
e Moving data around is more expensive than computing on it

e Start with a simple algorithm and keep it for readability and correctness checks

e Optimize only when needed
e Focus on the bottlenecks first (compute-bound or memory-bound)

e Auto-tune (automatically explore the parameter space)
e Different loop orderings
e Different tile sizes, on multiple levels L3, L2, and L1
e Different number of threads, thread blocks, vector lengths, etc
e e.g. using the Kernel Tuner (https://github.com/benvanwerkhoven/kernel tuner)

TU/e

https://github.com/benvanwerkhoven/kernel_tuner

Optimisation in GPUexplore: different work distribution

Thread-to-FSM work distribution:

si_st st s (IR E IS

Warp-to-FSM work distribution:

s EICH] s ERCH s EJEH < BIE

e GPUexplore 2 work distribution Thread-to-FSM
e |f threads focussing on the same state reside in the same warp, they can efficiently communicate
e Network of LTSs: Each thread does (more or less) the same operation, so no thread divergence
e SLCO models: each thread will call a different function, so thread divergence!
e GPUexplore 3 work distribution Warp-to-FSM
e Now threads in the same warp focus on the same process, so they execute the same function
¢ Threads diverge on the state of their process. Can we reduce this effect?
e Sort the states based on the state of this process
* Hou et al.. Fast Segmented Sort on GPUs, ICS (2017): intra-warp bitonic merge-sort

7 TU/e

Example: three FSMs
S{: state of FSM i in state j

Colour indicates warp (size 4)

GPU hash tables
ENEENRRNENNENRENANNENNENARNANEES

e Hash table implemented as (integer) array with hash function(s)
e To achieve coalesced accesses, partition hash table into buckets consisting of 32 integers
e Let a warp handle the lookup / insertion of an element

bool cooperative find(int e, int *T) {
int warptid = threadldx.x % 32;
int bucketid = h(e);
int entry = h(e) * 32 + warptid;
(e

return ballot (entry == e);

TU/e

GPU hash tables
ENEENRRNENNENRENANNENNENARNANEES 0

e Hash table implemented as (integer) array with hash function(s)
e To achieve coalesced accesses, partition hash table into buckets consisting of 32 integers
e Let a warp handle the lookup / insertion of an element

int cooperative insert(int e, 1int *T) {
int warptid = threadldx.x % 32;
int bucketid = h(e);
int entry = h(e) * 32 + warptid;
int e lane = ffs(ballot(entry == EMPTY))
if (warptid == e lane) {
atomicExch(h(e) * 32 + warptid, e);
}

return h(e) * 32 + e lane;

} TU/e

Wrap-up

e GPUs provide enormous potential to accelerate computations

* In formal verification: bisimulation checking, BFS, SCC/MEC decomposition, explicit-state
model checking

* Not covered: SAT solving, bounded model checking, term rewriting, theorem proving (ask
Jan!), probabilistic model checking (again, ask Jan!)

e A GPU program is not hard to write. However, optimising one requires hardware knowledge
e Think of:

e barriers

e types of memory

® warps

e intra-warp instructions

e Can GPUs help to accelerate your research?

TU/e

