
Visual Comput (2005)
DOI 10.1007/s00371-005-0283-5 O R I G I N A L A R T I C L E

Hitoshi Yamauchi
Hendrik P. A. Lensch
Jörg Haber
Hans-Peter Seidel

Textures revisited

Published online: 12 May 2005
 Springer-Verlag 2005

Hitoshi Yamauchi · Jörg Haber ·
Hans-Peter Seidel
MPI Informatik, Saarbrücken, Germany,

Hendrik P. A. Lensch
Stanford University, USA

Abstract We describe texture gen-
eration methods for complex objects.
Recently developed 3D scanning
devices and high-resolution cameras
can capture the complex geometry of
an object and yield high-resolution
images. However, generating a tex-
tured model from this input data is
still a difficult problem.
This task is divided into three sub-
problems: parameterization, texture
combination, and texture restoration.
A low-distortion parameterization
method is presented, which min-
imizes geometry stretch energy.
Photographs of the object taken from
multiple viewpoints under modestly
uncontrolled illumination conditions
are merged into a seamless texture
using our new texture combination
method.
We also demonstrate a texture

restoration method that can fill in
missing pixel information when the
input photographs do not provide
sufficient information to cover the
entire surface due to self-occlusion
or registration errors.
Our methods are fully automatic,
except for the registration process
between a 3D model and input
photographs. We demonstrate the
application of our method to human
face models for evaluation. The
techniques presented in this paper
make a consistent and complete
pipeline to generate the texture of
a complex object.

Keywords multiresolution texture
synthesis · mesh parameterization ·
image inpainting · image restora-
tion · facial modeling · frequency
decomposition

1 Introduction

Texture mapping is one of the oldest techniques in com-
puter graphics [9] – yet, it is one of the most powerful
techniques used today. In its original form, texture map-
ping is used to convey realism of objects, which are mod-
eled in a comparatively less complex and hence less re-
alistic way. Extensive research has led to many improve-
ments and related techniques such as bump mapping [8]
or environment mapping [29], which are commonly used
to enhance the visual quality of rendering in many real-
time applications. One of the main reasons for the success
of texture mapping and related techniques is probably due

to the hardware support of these techniques on high-end
graphics machines in the early years and on low-cost com-
modity graphics boards today.

One easy way to generate realistic objects is to scan
real objects. For example, we can capture the 3D geometry
of an object using a 3D range scanner. In order to ob-
tain textures, we can also take photographs with a digital
camera. 3D geometry, together with a high-quality texture,
may, for example, be used to represent real objects in the
context of virtual museums. Even in object design where
no real counterpart of the object exists, one may start with
an acquired object as a template.

Several problems have to be solved in order to apply
this approach successfully. For example, we need robust

techniques for efficient 3D object acquisition, mesh de-
noising, and registration between 3D geometry and 2D
photographs. Furthermore, in this paper, we will focus on
texture generation. This problem is subdivided into three
subproblems:

1. Parameterization: for efficient storing and processing
of the texture, we need to compute a 2D parameteriza-
tion of a 3D mesh.

2. Texture combination from photographs: the layout of
the 2D parameterization needs to be optimized to re-
duce occupied texture memory. The information of
several input views has to be merged.

3. Texture restoration: the derived texture often does not
cover the entire surface. We need some interpolation or
fill-in techniques to synthesize a texture.

The example given in this paper of an application of
texture generation is the generation of a textured human
face from a 3D scanned head model and several pho-
tographs. Because we are very well trained to recognize
real human faces, it is very challenging to produce a head
model of sufficient quality.

The main contributions presented in this paper are as
follows:

– For parameterization, we present

1. a method to temper the discontinuity effect in geo-
metric stretch parameterization, and

2. a view-dependent parameterization method for the
effective use of texture memory.

– In texture combination from several photographs, we
present a visibility-aware multiresolution spline tech-
nique to remove boundary effects due to uncontrolled
illumination.

– For texture restoration, we propose a technique that
combines image inpainting and texture synthesis with
non-parametric sampling methods through frequency
analysis of input images.

– If a 3D model and its corresponding 2D photographs
are registered, all of the techniques proposed in this
paper are fully automatic.

This paper is organized as follows: first, we survey re-
lated work in Sect. 2. Next, we detail each subproblem:
parameterization (3), texture combination from several
photographs (Sect. 4), and texture restoration (Sect. 5).
We show some results in Sect. 6. Section 7 concludes the
discussion.

2 Related work

A common approach to display a texture mapped model
with current graphics hardware needs a polygonal mesh,

its parameterization, and a texture image. When only
a polygonal mesh and several photographs are given, we
face two problems: parameterization and texture image
generation. The texture image generation problem is also
subdivided into two subproblems. One is texture com-
bination. Texture combination is the process of making
a single texture from several input photographs. The other
problem is texture restoration, which is needed when the
input photographs do not provide enough information to
cover the entire surface of the input model.

First we will overview related parameterization
methods. Then, we will review texture combination and
texture restoration methods.

2.1 Parameterization

Parameterization is often represented as the mapping from
3D vertex coordinates on a mesh to 2D uv texture co-
ordinates in a texture image. In this paper, we focus on
parameterization of triangle meshes in 3D space.

In early days of the technology, due to hardware lim-
itations, texture mapping was applied to relatively simple
polygonal meshes only. Manually creating a parameteriza-
tion was therefore acceptable.

However, recent graphics hardware can display larger
and more complex polygonal meshes with higher-reso-
lution texture images than before. It has become essential
to generate a high-quality parameterization automatically.

There are several aspects of parameterization:

– Texture atlas: to avoid high distortion, some parame-
terization methods cut the input mesh into charts and
parameterize each chart individually. A texture atlas
combines all of these charts.

– Energy function: the basic idea to solving the param-
eterization problem is to minimize an energy function
based on some distortion metric between 3D space
and 2D space. This means the energy function should
have large energy when the mapping introduces high
distortion. According to the applied energy function,
methods are classified as linear or nonlinear.

– Boundaries: for effective use of hardware resources,
a texture should fit into texture memory and should
have a square shape. On the other hand, this restriction
may be too stringent for low-distortion parameteriza-
tion. Boundary conditions on the texture image estab-
lish the weight of each restriction.

2.1.1 Texture atlas

The traditional approaches of parameterization are to cut
a mesh into charts and pack them into a texture atlas [6,
12, 38, 42, 45, 47, 60, 62, 70, 71]. Once a mesh is cut into
charts, we can parameterize each chart by using our pre-
ferred parameterization method.

Once a texture atlas is introduced, it becomes relatively
easy to keep the distortion low inside the charts. There
are, however, three main drawbacks of the texture atlas
approach: (1) it introduces discontinuities between charts,
(2) it introduces a mesh cutting problem when creating the
charts, and (3) it introduces artifacts while MIP-mapping.

Quite some effort has been taken to solve the disconti-
nuity problem [30, 41, 42, 44], and the mesh cutting prob-
lem [42, 45, 66]. However, it seems we still do not have
a comprehensive solution and some of these problems re-
main unsolved. The third problem is substantially harder
to solve because MIP-mapping usually assumes continuity
in the uv domain.

Let us first focus on objects that are topologically
equivalent to a disc. Those objects can be parameterized
by a single chart avoiding the disadvantages of a texture
atlas.

2.1.2 Energy function

Bennis et al. pioneered the use of energy functions in
parameterization. They proposed a technique to map an
isoparametric curve of a 3D surface onto curves of a plane
with two distortion metrics [6]. Their energy function is
based on geodesic curvature preservation and arc length
preservation. During the calculation, the mesh will be cut
if the intermediate distortion energy is larger than a cer-
tain threshold. The method unfortunately requires C2-
continuity of the surface to satisfy geodesic curvature
preservation.

Maillot et al. defined distance energy and surface en-
ergy for parameterization [47]. The distance energy tries
to minimize distortion, while on the other hand, it may in-
troduce triangle flipping. To avoid this, a nonlinear surface
energy term is introduced. This surface energy term helps
to reduce triangle flipping, but cannot guarantee that no
triangles are flipped. The total energy is a weighted com-
bination of both energies. Remaining triangle flipping can
be removed using an interactive tool. Compared to the pre-
vious method, C2-continuity is no longer required.

Quadratic energy/solving linear systems. Eck et al. pro-
posed the concept of discretized harmonic map en-
ergy [20]. The harmonic map assigns non-uniform spring
constants to the mesh edges, which resemble a kind of
Dirichlet energy. Since this energy is quadratic, the mini-
mum energy is found at the zero crossing of the derivative.
Thus, we can use any linear system solver to compute
a parameterization of the input mesh. Solving linear sys-
tems is usually fast and more stable compared to solving
nonlinear systems. However, triangle flipping might occur
with this method as well.

Floater proposed a similar method [24]; the advan-
tage of his method is it can guarantee that no trian-
gle is flipped when the parameterized mesh has a con-
vex boundary. The energy function tries to keep a trian-

gle shape with an approximating geodesic polar angle at
each one-ring neighbor. This method is linear and stable.
Later, Floater improved the smoothness of the function
based on the mean value theorem for the harmonic func-
tion [25].

The conformal surface parameterization was intro-
duced by Haker et al. [31]. We can find interesting sim-
ilarities with Duchamp et al. citebib:Duchamp1997 in
a remeshing context, and with Desbrun et al. [17] in a fair-
ing context. Conformal mapping finds the parameteriza-
tion as the solution of a second-order partial differential
equation (PDE) defined on the input mesh, which keeps
the conformality of the one ring around each vertex.

Desbrun et al. presented the method of intrinsic param-
eterization [16], where the energy U is a linear combina-
tion of the conformal energy Uconformal, and the authalic
(area preservation) energy Uauthalic: U = λUconformal +
(1 −λ)Uauthalic. This paper also establishes some crite-
ria for calculating the optimal λ and to obtain the natural
boundary. At almost the same time, Lev́y et al. cite-
bib:Levy:2002 presented least squares conformal maps.
The parameterization is the same as in discrete natural
conformal parameterization in [16]1. This paper also deals
with automatic texture atlas generation.

The basic structure of the above methods [16, 20, 24,
25, 31, 45] is the same, and the main difference is the
definition of the distortion energy. One considers confor-
mality, the other considers shape preservation, and so on.
These methods solve a sparse linear system with different
coefficients of the mesh connectivity matrix. One common
feature of these methods is fast computation. However, we
experienced lower quality of these linear methods com-
pared to the nonlinear methods, which we will address
next. In cases where the geometry of the surface is more
or less similar to the parameter domain, the results of the
linear and nonlinear methods are similar.

Nonlinear energy: Hormann and Greiner proposed the
MIPS (Most Isometric ParametricS) parameterization [37].
They attempted to preserve the isometry of triangles over
the parameterization by fixing the condition number of the
transformation matrix.

Instead of using the condition number of the trans-
formation matrix, Sander et al. introduced the root-mean-
square of the singular values of the matrix, called the
geometric-stretch metric for parameterization [62]. Intu-
itively, this measures how a unit circle on the domain is
stretched when it is mapped onto the surface. Later, they
introduced the idea of signal-stretch energy to improve the
quality of the parameterization with respect to a given tex-
ture [63], color, or normals.

Balmelli et al. proposed space-optimized texture
maps [4]. They used the frequency information of the in-
put image as a signal. The difference from the previous

1 http://www-grail.usc.edu/pubs/CD02.pdf

approach [63] is that they applied a warping function on
the texture image instead of using distortion energy on
the mesh. To make efficient use of texture memory, the
high-frequency areas of the image are stretched, whereas
low-frequency regions are shrunk.

All of these methods [4, 37, 62, 63] generate high-
quality parameterizations for texture maps; however, they
are based on time-consuming nonlinear optimization.

In order to speed up the calculation, Sander et al.[63]
used a multiresolution approach. First, they calculated the
energy on a coarse mesh. Then, they sequentially added
vertices similar to progressive meshes [36] and again min-
imized the energy. This process is repeated until all ver-
tices are added. While the computation time is drastically
improved, it still takes around ten times more time than the
linear optimization methods.

There are also parameterization methods based on the
idea of flattening. Sheffer and de Sturler [65] proposed
a parameterization method that minimizes an angle dis-
tribution error around each vertex. The error criterion is
linear, but they introduced several nonlinear constraints
to avoid unwanted situations, e.g., boundary intersec-
tions. Later, Zayer et al. [81] improved the computa-
tional cost and introduced a boundary shape controlling
factor. Sorkine et al. [70] proposed another flattening
method based on a modified geometric-stretch energy.
Their method can guarantee the maximum error, because
when the error is too large, the mesh is cut to achieve low
distortion. One advantage of those flattening methods is
that there is no limitation of a predefined boundary condi-
tion, e.g., fixed boundary, convex boundary.

Other interesting methods: Igarashi proposed an interac-
tive user-guided parameterization method [38]. The user
selects a painting area and a view direction, and the local
parameterization is found by projecting the selected area
into the view plane. In Sander’s paper [63], this method is
mentioned as a signal-based method. The signal to choose
or the importance given to each is defined by the user.
When the size of the painted area is relatively small, this
method works well, since only the user-specified import-
ant parts are parameterized by the projection.

Piponi and Borshukov proposed a cutting and blending
technique for textures on a subdivision surface called pelt-
ing [57]. Since the cutting is guided by the user, it is rela-
tively easy to generate intuitively parameterized meshes
for painting. The energy function is basically the same as
in [47]. In order to reduce the artifacts across the cuts, tex-
ture seams are blended using a linear function.

2.1.3 Classification

We can classify the different parameterization techniques
according to their definition of the energy function; for
example, whether the system is linear or whether the
energy is globally defined. Further considerations are

Table 1. Classification of parameterizations. The column labeled
“Atlas” shows whether generating an atlas is necessary or not.
“NB” stands for “natural boundary.” If this column is labeled Y(es),
it is possible to minimize energy while optimizing the boundary
shape

Linear system

Energy function Atlas NB

Harmonic map [20] N N
Shape-preserving [24] N N
Chord length [57] N N
Conformal [31] N N
Feature match, gradient constraint, regularization [44] N2 Y
Conformal + area [16] N Y
Improved shape-preserving [25] N N

Nonlinear system

Energy function Atlas NB

Geodesic curvature, arc length [6] Y N
Distance, surface (flipping) [47] Y N
Isometry (MIPS) [37] N Y
Geometric stretch [62] N2 N
Geometric stretch, signal stretch [63] N Y
Flattening, angle distortion [65, 81] N Y
Flattening, geometric stretch3[70] N Y

Others

Energy Function Atlas NB

Boundary smoothness4[42] Y –
Simple projection [38] Y –

the topological limitations that the method imposes if
the parameter domain consists of a single chart only, or
if multiple charts are grouped into a texture atlas, and
so on.

Table 1 shows one example of such a kind of clas-
sification. In this table, when the column Atlas is la-
beled Y(es), it means that this method needs to cut the
input mesh during the parameterization process. There-
fore, when the column is labeled is N(o), the input
mesh and output mesh always have the same topology.
This difference is slightly ambiguous, because some
methods make an atlas in the preprocessing stage. For
example, some methods [45, 62] first decompose the in-
put mesh to submeshes, then each submesh is param-
eterized. However, the topology of each submesh does
not change. Although these methods generate an atlas,
it is not necessary to classify them as atlas-generating
methods since the atlas-generation is at the preprocessing
stage.

2 These papers generate an atlas in preprocessing stage.
3 The geometric-stretch energy [62] is defined as the root-mean-square of
the singular values of the mapping matrix. The method [70] uses a modi-
fied geometric stretch energy.

Most of the methods need a boundary condition, e.g.,
a fixed boundary of the input mesh. For example, some ap-
proaches treat the parameterization problem as the Dirich-
let problem. Fixing the mesh boundary may introduce
a high distortion area around the mesh boundary. To over-
come this limitation, some methods alleviate this condi-
tion. Such methods are denoted by Y in the as natural
boundary (NB) column in the table.

Surface parameterization is a fundamental problem
and attracts a lot of research interest. If the reader is inter-
ested in more theoretical details in this area, please refer to
the recent survey by Floater and Hormann [26].

2.2 Texture generation

Once a 2D parameterization is constructed, we have to
create the corresponding texture image.

Soucy et al. proposed a texture-generation method for
a complex triangle mesh of arbitrary topology [71]. First,
3D triangles of the mesh are sorted according to a certain
criterion, such as area, largest edge length, and so on. Each
triangle is independently inserted onto the texture map.
They are packed as half-square triangles into the 2D tex-
ture. The texture atlas generated by this method contains
one separate chart for each triangle.

Rocchini et al. proposed an approach for mapping and
blending the texture on a 3D geometry [60]. For a 3D
scanned object, they start with a set of uncalibrated pho-
tographs that are registered interactively and stitched onto
the 3D mesh. The relevant image regions are integrated
into a single texture atlas map. The assignment of regions
from the input images to the corresponding parts of the
texture depends on the visibility according to the registra-
tion. Slight misregistration is accounted for by automatic
local feature alignment.

Later, they proposed preserving attribute detail on
simplified meshes [12], where the attributes range from
color textures, to bump, displacement, or shape maps.
The heuristic texture atlas packing method, called irreg-
ular triangle packing, is more sophisticated than former
methods [60, 71].

During the combination of several images, visual arti-
facts may occur at the boundaries between original image
regions. These artifacts are due to several reasons, in-
cluding difference in lighting conditions, view-dependent
shading, or registration errors. To delete such unintended
artifacts, the images are blended or blurred, e.g., by
applying a Gaussian filter or continuous blending func-
tions [57]. Pighin et al. proposed a more sophisticated
blending weight function, which considers self-occlusion,
smoothness, positional certainty, and view similarity [56].
This method changes the blending weight according to the
view direction.

4 This method is for making an atlas; the parameterization method used for
parameterizing each chart is unimportant.

While the artifacts can be eliminated by these methods,
these techniques also destroy image detail in the boundary
area. In order to keep more detail, Burt and Adelson [11]
proposed a multiresolution spline technique. Multiresolu-
tion analysis decomposes the images into high and low
frequencies, and images are blended at each level sep-
arately. This effectively eliminates the artifacts and still
keeps high-frequency detail in the images.

2.3 Image restoration

In this paper, the term “image restoration” means filling in
damaged or missing pixels. Image restoration plays an im-
portant role for texture generation. Typically, some surface
regions exist for which no information can be gathered
from the input images due to occlusion, registration errors,
or other reasons.

There are two main image restoration methods:
1. diffusion-based image restoration;
2. texture-synthesis-based image restoration.

2.3.1 Diffusion-based image restoration

In the image processing area, diffusion processes are use-
ful for a large range of applications. Perona and Malik [55]
introduced the anisotropic diffusion. Diffusion is formu-
lated as ∂ut = div(G(u)∇u), where G(u) = g(|∇u|2). The
function g represents an arbitrary edge-detection opera-
tor. Because an edge region usually has a high gradient,
the diffusion process will change its magnitude according
to the absolute value of its gradient. Later, Saint-Marc et
al. presented adaptive smoothing [61]. This method adap-
tively changes the term G(u) of the anisotropic diffusion.
The term G(u) does not only rely on the signal itself, but
also the first derivative. Anisotropic diffusion has success-
fully been applied to problems such as denoising, image
segmentation, image enhancement, and so forth.

Bertalmio et al. introduced anisotropic diffusion as an
automatic digital inpainting method [7]. Their anisotropic
diffusion process fills the interior of user-defined image
regions taking into account isophoto lines.

Oliveira et al. proposed a simpler and faster inpaint-
ing method [53]. They assumed that the usual defect of
an image is rather small and anisotropic diffusion needs
to be applied only in exceptional cases. The user manu-
ally indicates such exceptional cases, and the defect part is
repaired by isotropic diffusion otherwise.

Ballester et al. presented an image interpolation scheme
by solving the variational problem [3]. The diffusion pro-
cess is represented by second-order partial differential
equations. It consists of a gray-level intensity diffusion
term and a gradient-orientation term.

Pérez et al. proposed a Poisson image editing method
[54]. Using this method, images are edited by solving
Poisson equations with respect to a user-prescribed guid-

ance vector field under given boundary conditions. This
is a versatile editing method. Some of the applications of
this method, in particular, in seamless image insertion and
feature exchange, are useful for image editing.

2.3.2 Texture synthesis-based image restoration

Recently, texture synthesis has drawn a lot of research in-
terest. Based on a given sample, a large, new texture with
a similar (but not identical) pattern is created automati-
cally. Texture synthesis can also be used to fill in holes in
image restoration. In this context, the word “texture” is de-
fined as an image that has some spatial coherence.

Procedure-based texture synthesis: Texture synthesis
started with procedural texture generation, like a checker
board. The basic procedure-based texture synthesis method
describes a texture by a mathematical function. The ma-
jor advantage of this method is that it is resolution-
independent. The texture can be generated at any reso-
lution. However, you need to design a function and pa-
rameters for each texture. Other procedural-based tex-
ture synthesis methods use, for example, fractals [27],
reaction-diffusion [75], and cellular particles [23]. There
are also some explicit methods for certain textures,
e.g., that presented by Miyata [49].

Statistical texture analysis and synthesis: Gaber proposed
many basic methods for texture synthesis [28]. His paper
includes several models: the N-gram model, autoregres-
sive model, autoregressive linear model, algebraic recon-
struction model, field definition model (segment a source
image and transfer texture information with its mask), and
best-fit model. His best-fit model has since been rediscov-
ered and is now called the texture synthesis method [22].

Popat et al. presented a cluster-based probabilistic
modeling technique for high-dimensional vector
sources [58]. A vector is constructed by concatenating
a pixel and the neighborhood pixels of the input texture.
These vectors are analyzed to estimate the probability
density function (PDF) of the pixel occurrence in the
texture. The estimated PDF is used to synthesize a tex-
ture. They also proposed a hierarchical texture synthesis
method using multiresolution analysis.

Heeger and Bergen proposed a pyramid-based tex-
ture analysis/synthesis method [33]. The input texture is
analyzed using a multiresolution method, and a steerable
pyramid is created. The output texture is initialized with
random noise, then the histogram distribution is matched
to the input texture at each pyramid level. By construc-
tion, the output image has a similar histogram distribution
through all levels of the pyramid. Since this method only
considers the histogram distribution of the input and the
output, the input image should be a homogeneous texture.
It cannot handle periodic or non-homogeneous patterns.
Later, Bonet introduced joint occurrence of pixels across

multiple resolutions to Heeger’s method [14]. Because
this method considers the hierarchical structure between
pyramid levels, it can reconstruct larger structures than
Heeger’s method.

Simoncelli and Portilla presented a texture synthe-
sis method based on statistical measurements of the
seed image and its wavelet decomposition [67]. The
authors applied higher-order statistics while the previous
methods [14, 33] considered only first-order statistics, i.e.,
histograms.

An approach based on statistical learning to repro-
duce the appearance of an input texture has been proposed
by Bar-Joseph et al. [5]. Their method treats the input as
a signal that satisfies a hierarchical statistic model. Using
wavelets, they construct a tree representing a hierarchical
multiscale transform of the input signal. A new texture is
synthesized by tracing this tree according to a similarity
path. The approach allows for the mixing of different input
textures by mixing their corresponding trees. The method
has been successfully applied to 1- and 2-D signals like
sound sequences and images, and it will be extended to
process video sequences. The presented results are quite
impressive compared with other statistical methods.

Some statistical texture synthesis models also expand
to the temporal domain; namely, synthesizing video se-
quences. Szummer and Picard proposed such a model [72].
They assumed that temporal texture can be modeled by
Gaussian noise with an autoregressive signal, leading
to a spatio-temporal autoregressive model (STAR). They
demonstrated their method on wavy water, rising steam,
and fire. They considered the consistency between frames
in their model.

Texture synthesis: In 1948, Claude Shannon mentioned
a method for producing English-sounding text based on
N-grams [64]. The new text is synthesized by searching
for similar text sequences in the seed text. Popat and Pi-
card’s approach [58] is a kind of extension of this idea to
two dimensions. While Popat and Picard used a paramet-
ric sampling, Efros and Leung proposed a non-parametric
sampling method that creates a lookup directory from the
input source prior to texture synthesis [21]. The same
idea is found in Garber’s forgotten work [28]. It is based
on Markov random fields, which depend on the gener-
ated pixels and the input seed texture. Compared to other
statistics-based texture synthesis models, this approach
has no problems in reproducing the spatial structure of the
input texture.

Wei and Levoy presented an acceleration method of
the non-parametric texture synthesis using tree-structured
vector quantization [77]. They applied the causal ker-
nel [58] (called “best-fit model kernel” in [28]) in scanline
order. The output image boundaries are handled toroidally
to obtain a tileable texture. In order to capture a large
structure in the input texture, multiresolution texture syn-
thesis is considered. They also proposed an extension

to three-dimensional textures, e.g., to the temporal do-
main.

A coherent match method for the similarity lookup in
source texture has been presented by Ashikhmin [2]. The
coherent match selects a similar subimage according to the
history of the synthesis process. Once a similar subimage
is found, the next similar subimage is very likely to be
located adjacent to the last selected one, because texture
has some local coherence. In addition, a user can guide the
process to obtain a specific output texture. The user inputs
rough structures of the output texture, which are then con-
sidered together with the already synthesized pixels during
the search for a similar subimage in the seed texture. The
coherent match method is rather efficient.

Zelinka et al. proposed a real-time texture synthesis
version of the coherent map [82]. They first analyzed the
input image to make a similar subimage link map from
each pixel, called a jump map. Synthesis is performed by
either copying the next pixel or jumping to a similar place
according to a random number and then copying the pixel.
To speed up the computation times, no similarity compar-
ison is done during synthesis.

Hertzmann et al. presented an image-processing frame-
work by example, called “image analogies” [34]. This
filter makes a mapping from source image A to destina-
tion image A′, and applies that map to source image B to
output the destination image B′. That is why it is called
image analogies. This filter synthesizes an image using
both of the above mentioned non-parametric sampling tex-
ture synthesis functions, i.e. a best approximate match [21,
28, 77] and a best coherence match [2]. The distances re-
sulting from these two matching functions are weighted by
a user-specified parameter to determine which of the two
matches is selected. The authors demonstrate many appli-
cations of the image analogies filter, e.g., traditional image
filter, texture synthesis, super-resolution, texture transfer,
artistic filter, texture by numbers, and so forth.

Most of these methods search for similar vectors in
the spatial domain. Soler et al. proposed searching in the
frequency domain [69]. They reinterpreted the similarity
search as correlation, and the correlation of two func-
tions can be computed in O(N log N) in Fourier space
through the FFT algorithm instead of O(N2). When the
input is static, a kD-tree makes the calculation complex-
ity O(N log N) for the search. However, the tree must
store all vector elements. This consumes a large amount
of memory, since each vector typically contains 10 to 100
pixels. Instead of this, Soler’s method only requires the
size of input image (DCT) or the doubled size (FFT).

To exploit more coherence in the source texture, patch-
based approaches have been proposed instead of per-pixel-
based approaches.

Efros and Freeman proposed a patch-based texture
synthesis method called image quilting [22]. First, a seed
texture is subdivided into smaller blocks. Second, these
blocks are randomly replaced such that neighboring

blocks overlap. Finally, the overlapping regions are
blended with a minimal error bounding cut.

Liang et al. presented a patch-based sampling texture
synthesis method [46]. To exploit the coherence in the
texture image, they transferred the complete subimage in-
stead of a single pixel at each search. They introduced
a new tree structure to solve ambiguities by multiresolu-
tion analysis.

A patch-based technique for image and texture synthe-
sis was proposed by Cohen et al. using Wang tiles [13].
Wang tiles are squares in which each edge is assigned
a color. A valid tiling requires all shared edges between
tiles to have matching colors. They proposed a stochas-
tic tiling method that can generate a non-periodic pattern
and a seamless Wang tile seed-generation method apply-
ing image quilting [22]. Since only a color match test is
required for construction, this method is much faster than
other methods that need an expensive similarity search to
generate a non-periodic texture.

Patch-based texture synthesis methods are usually very
fast because they generate several pixel sets at once. The
drawback of these methods is that when the input has large
structures like complex depth or low-frequency shading
effects, artifacts become visible in the synthesized images.

Nealen et al. proposed a hybrid method combining
patch-based methods with pixel-based methods [50]. The
patch similarity is calculated as described in Soler and
Angelidis [69]. Then, they calculated the error of the sur-
rounding patch boundary. Each pixel with too large an
error is optimized using pixel-based texture synthesis.
This method can handle large structures as well as patch-
based methods, but can produce better boundaries. This
advantage comes along with a loss of speed compared to
the patch-based methods.

Usual synthesis methods use the L2 norm as a sim-
ilarity measure. Harrison used an entropy measure with
Manhattan distance (L1) to calculate the similarity meas-
ure [32]. He stated that the L2 norm emphasizes outliers.
In addition, he introduced a constraint map to handle non-
homogeneous textures. The user marks an importance
map containing weights for each source pixel. Harrison
demonstrated that some of the non-homogeneity in the
texture can be handled with this importance map.

Another subimage similarity metric was proposed by
Brooks and Dodgson [10] for the editing of a texture
image. Similarity is used to replicate editing operations
to all similar pixels in the texture. For the similarity met-
ric, all pixels in the input image are encoded by a single
value computed as the sum of squared differences between
each corresponding neighborhood pixel. Instead of com-
paring subimages, the similarity is defined as the L2 norm
between the encoded values.

These texture synthesis methods assume homogeneity
in the source texture, and they use a similarity search with
relatively small kernels. Therefore, it is hard to capture
large structures that are introduced by the depth of a scene

or by shading effects. Multiresolution analysis to some ex-
tent alleviates these effects [34, 77].

To overcome the limitation caused by large structures
in the image, Oh et al. separated the image into segments
manually according to the depth [52]. The texture syn-
thesis method can use this depth information. However,
the segmentation needs severe manual preprocessing. It
is mentioned in the paper that processing one example
takes around ten hours by hand. The structure of the illu-
mination is extracted by applying the (bilateral) SUSAN
filter [68, 74]. This filter can smooth out small details
while keeping sharp edges. Therefore, this filter suits tex-
ture editing with relighting.

Frequency domain transfer: Hirani and Totsuka proposed
an image restoration algorithm that can handle both tex-
ture and intensity variations [35]. Their algorithm is based
on projections onto convex sets and employs a Fourier
transform together with a clipping procedure. Projection
and Fourier transformation are alternately carried out for
a user-defined number of iterations. In addition, the user
must interactively select a sample region, which will be
used to repair the damaged area. The sample region is re-
stricted to a translated version of the defective region with
respect to its texture. Care is taken to automatically adapt
intensity variations between the sample and the defected
regions.

Texture synthesis on a surface: Traditionally, texture syn-
thesis has been carried out on two-dimensional images;
however, recently, there have been several texture synthe-
sis methods proposed that work directly on surfaces of
3D objects [76, 78, 80, 83]. The main difficulty is to define
an appropriate regular neighborhood on arbitrary surfaces.
Wei and Levoy generated this regular pattern by local
parameterization of the mesh [78]. Turk’s method uses
a direct vector-field-generation technique on surfaces [76].
Zhang et al. also employed a user-guided vector field on
the surface. In addition, they used a texton mask to keep
features of the seed texture and resample pixels to achieve
rotation and scaling effects [83]. This approach requires
the user to input the initial course direction of the vec-
tor field. According to the vector field, a regular sampling
can be achieved. Lexing et al. solved the problem by in-
troducing a texture atlas containing a sufficient number of
charts for a smooth parameterization [80]. There are sev-
eral methods to make such charts; for instance, the method
proposed by Lee et al. [42].

Restoration method based on texture synthesis: Igehy
and Pereira introduced an image-replacement method [39]
based on the histogram distribution texture synthesis
method introduced by Heeger [33].

Drori et al. proposed an iterative approximation restora-
tion method [18]. The problem of restoration methods
based on texture synthesis is that the result is very sen-
sitive to each pixel selection. This means that a wrong

pixel being selected can lead to a fatal visual effect in the
restoration. To avoid this binary decision effect, Drori et
al. introduced a confidence map. During the restoration
process, a missing part is selected with its surrounding
subimage, and the subimage is assigned a certain confi-
dence value. If most of the subimage belongs to the non-
missing part, the confidence value is high. If, however,
a subimage is only reconstructed, its confidence value is
low. This method iteratively updates the missing part and
the confidence map to avoid an incorrect selection.

3 Parameterization

Let us first consider the case of parameterization of a 3D
input mesh over the 2D domain [0, 1]2. In order to avoid
artifacts when texturing the 3D object, we will first con-
centrate on parameterization of the entire mesh at once,
i.e., without introducing cuts on the surface resulting in
a texture atlas containing a single patch. The result in-
troduces no problems when MIP-mapping is applied, but
it is clear that this goal cannot be achieved for arbitrary
meshes.

The focus application of this paper is on representing
human faces. Fortunately, human faces are topologically
equivalent to a disk, since one can introduce a boundary
around the neck, and faces typically do not contain any
handles. Some other example meshes in this paper also
have disk topology.

In this section, we will compare the output of various
parameterization algorithms and introduce a new method,
which adds two new terms to the L2 geometric stretch
energy in order to obtain a less distorted and more control-
lable parameterization.

3.1 Parameterization techniques

Figure 1 shows comparisons of several parameterization
methods of the Stanford bunny model. For texture map-
ping, the L2 geometric stretch method [62] usually pro-
duces the best results, because it keeps both conformal-
ity and low area distortion. Assume a parameterization
map M1 from S to S’ of triangle mesh. There exists an-
other map M2 for area of each triangle i, ATi → A′

Ti
.

The distortion of M2 called area distortion. So, it could
not be changed. However, this method needs an initial
valid parameterization, and it is usually time-consuming,
since it minimizes a nonlinear energy function. In our
case, an initial valid parameterization is generated using
Floater’s [24] method.

Other examples produced by L2 geometric stretch pa-
rameterization are given in Fig. 2. In fact, since these
models are more or less geometrically similar to a disk,
even some of the linear energy minimization methods
(e.g., [16, 24, 25, 31]) can produce good parameterization
results for these models.

Fig. 1. Comparison of parameterization methods. From top to bot-
tom, 1. Floater [24], 2. Intrinsic [16] (λ = 0.5), 3. MIPS [37], 4. L∞
geometric stretch [62], 5. L2 geometric stretch [62]

Fig. 2. Well parameterized cat head and forehead obtained by L2

geometric stretch parameterization

Figure 3 shows the results of rather geometrically com-
plex models. For most parts of the models, good con-
formality and low area distortion are achieved. However,
the L2 geometric stretch parameterization sometimes pro-
duces severe cracks on the textured model as shown in
Fig. 3. For example, both the Stanford bunny model and
the mannequin head model have several cracks on the
backside of their necks. These cracks are referred to as
“parameter cracks.”

Praun and Hoppe introduced an L p regularization term
to the L2 geometric stretch energy to alleviate this prob-
lem [59].

L p = ε

(
A′(Ti)

4π

)p/2+1

(Γ(Ti))
p (1)

where p and ε are user-defined parameters, A′(Ti) is the
area of the ith triangle Ti in the 3D mesh, and Γ(Ti) is the
largest singular value of the transformation matrix from
the 3D domain to the 2D domain. This regularization term
tries to punish triangles that have large singular values
more than those only using L2 geometric stretch energy.
Instead of applying this L p term to an inverse stretch
calculation as in [59], we applied this term to a planar do-
main in the same way. However, the results in Fig. 4 show
that although this term alleviates the effect of parameter
cracks a little, it introduces other unwanted distortions.
Moreover, the L p term requires two unintuitive parame-
ters, ε and p. The effect of these parameters are hardly
predictable, and in our experiments, the optimization gets
stuck more easily in local minima compared to the pure
L2 geometric stretch energy case. In Fig. 4, we test sev-
eral parameters starting with the recommended values in
Praun and Hoppe [59] (ε = 0.001, p = 6). In this experi-
ment, the area normalization coefficient 4π of L p term in
Eq. 1 is 1.0, since our parameter domain is a unit square
instead of a unit sphere.

As several applications require preserving the mesh
structure [40], we only apply this regularization term to

Fig. 3. The two images on the left show examples of parameter cracks on a 3D textured model. Notice that there is a large distortion
around the neck part. The two images on the right show the distribution of distortion for the mannequin model both on the 3D model and
on its 2D parameterization. The distortion ranges from 0.2 (blue) to 3.8 (white) in terms of L2(T), as given in Sander et al. [62]. For the
bunny model, the total distortion L2(bunny) = 2.17×104, and for the mannequin model L2(mannequin) = 7.11×103

Fig. 4. Results of an L2 + L6 parameterization. For the bunny model, a choice of ε = 0.01, p = 6 results in L2(bunny) = 3.01×104, and
for the mannequin model, ε = 0.001, p = 6 gives a total distortion of L2(mannequin) = 1.07×104

parameterization, unlike [59], which uses remeshing. It
might be more effective to achieve low distortion by com-
bining parameterization with a regularization term and
remeshing. The paper by Praun and Hoppe [59] shows
a good result of this combination if a remeshing is pos-
sible. In the next section, we will also discuss avoiding the
parameter crack effect without changing the input mesh
structure.

3.2 Extensions to the L2 geometric stretch energy

We introduce two new terms to the L2 geometric stretch
energy as shown in Eq. 2. One is to increase the effect-
ive use of the texture area, and the other is to avoiding the
parameter crack effect.

L2(M) :=

√√√√√√√
∑

Ti∈M

{(
L2(Ti)

)2
ω(Ti)A′(Ti)+ s(Ti)

}
∑

Ti∈M
ω(Ti)A′(Ti)

(2)

with

ω(Ti) = 1

〈N(Ti), V 〉+ k

s(Ti) =
{

0 min h
b >= α

infinite energy min h
b < α

where M = {Ti} denotes the triangle mesh, A′(Ti) is the
surface area of triangle Ti in the 3D mesh, N(Ti) is the tri-
angle’s normal, V is a direction vector, and k(> 1) and α
are user-prescribed parameters (see below).

The first term, ω(Ti), models “visual importance.” Tri-
angle geometric stretch energy is minimized over the
whole mesh equally. However, we would like to use as
much texture space as possible for the “important” regions
of a model while minimizing the texture space allocated to
“unimportant” regions, since the size of textures that can
be handled by graphics hardware is typically limited. For
instance, the front face is more important for the viewer
than the ears or even the back of the head in the hu-
man head model. Once an important view is defined by
a user through the direction vector V , the visual impor-
tance function ω thus favors the triangles on the face by

Fig. 5. Influence of the triangle shape term s(Ti) on the distortion. Compared to Figs. 3 and 4, parameter cracks are alleviated. Here,
L2(bunny) = 4.40×104, and L2(mannequin) = 7.58×103

diminishing their error while penalizing the triangles on
the back of the head by amplifying their error. As a conse-
quence, triangles on the face become larger in the texture
mesh while back-facing triangles become smaller. We call
this a view-dependent parameterization, since parameter-
ization is dependent on the view deemed to be most im-
portant. The user can control the degree of ω’s influence
on the parameterization result through the parameter k. To
enlarge the influence of visual importance, k should be
close to 1.0. From our experience, useful values for k are
within [1.01, 2], which results in ω(Ti) ∈ [1/3, 100]. The
ω is considered as another signal in Sander’s signal-based
method [63].

Figure 6 shows view-dependent parameterization re-
sults for various view directions V . In this figure, we use
the energy function of Eq. 3 without the s(Ti) term to clar-
ify the effect of the visual importance function alone. The
user-defined parameter k is set to k = 1.2.

The second term s(Ti) controls each triangle’s shape.
The regularity of a triangle is represented by the ratio h/b
of the height h and the baseline length b. There are three
ratios in a triangle, and we define h/b to be the smallest
ratio of the triangle. When this ratio is too small, the en-
ergy becomes infinite, which punishes this triangle. The
triangle shape threshold α is given by the user. α de-
pends on the input mesh, the resolution of input texture
image, and an additional criterion. One plausible crite-
rion for texture mapping is, for example, that all triangles
should cover at least one complete pixel. From our ex-
periences, we recommend α ∈ [0.05 . . .0.15] for [512 ×
512 . . .4096×4096] texture images with up to 104 trian-
gles. We also assume the input mesh triangle more or less
satisfies this h/b ratio.

Figure 5 shows the effect of this triangle shape term on
reducing cracks. The term introduces less distortion than
in L2 + L p geometric stretch energy results, and it still
retains conformality and a low area distortion. We also as-
sume the h/b ratio parameter to be more intuitive than
the L p energy in Eq. 1, since the h/b ratio is more di-
rectly coupled to the triangle shape. One large difference

Fig. 6. The effect of the visual importance function ω(Ti). From top
to bottom, the view direction V is changing from the left side of
the face to the right side. In each row, from left to right, we see the
left side, front, and right side of the mannequin head model, and the
parameterization result. For all images, k = 1.2 has been chosen

compared tothe method presented in Tarini et al. [73] is
that our method can control this parameter crack effect.

Introducing the s(Ti) term makes the total distortion en-
ergy higher than the original L2 energy (see Figs. 3 and 5);
however, this term equalizes the distortion distribution and
achieves the lowest number of visual artifacts.

4 Texture combination

After having created the 2D parameterized mesh from
the 3D input mesh, we resample the texture mesh from
the input photographs that have been registered with the
mesh. We will show how to combine a single texture from
several input photographs using a face model and pho-
tographs as an example.

4.1 Resampling input images

First, we perform a vertex-to-image binding for all ver-
tices of the 3D face mesh. This step is carried out as
suggested in Rocchini et al. [60]: each mesh vertex v is as-
signed a set of valid photographs, which is defined as the
subset of the input photographs such that v is visible in
each photograph, and v is a non-silhouette vertex. A vertex
v is called a silhouette vertex, if at least one of the trian-
gles in the triangle fan around v are oriented opposite to
the viewpoint. For further details see Rocchini et al. [60].
A vertex v is visible in a photograph if the projection of
v on the image plane is contained in the photograph, the
normal vector of v is directed towards the viewpoint and
there are no other intersections of the face mesh with the
line that connects v and the viewpoint. In contrast to the
approach in Rocchini et al. [60], we do not require that all
vertices of the face mesh are actually bound to at least one
photograph, i.e., the set of valid photographs for a vertex
may be empty.

Theoretically, this is enough to classify vertices. How-
ever, there might be some error because of registration or
numerical errors especially in the neighborhood of silhou-
ettes. Some of the vertices can be bound to the background
pixels of the input photographs. Such a vertex should be
classified as an unbound vertex. We detect this registration
error by comparing the color value with the background
color of the input image. First, we calculate the projec-
tion coordinate of a vertex to its bound photograph. Then,
we sample the pixel value and calculate the distance be-
tween this pixel value and the background color. To avoid
misdetection, we reduce the noise in the input photographs
by applying a usual median filter. In addition, we use
Gaussian convoluted pixel samples with a 3×3 subimage
mask, since we do not rely on a single pixel sample. If
the distance is larger than a given threshold value, then the
vertex is reclassified as an unbound vertex.

Let ∆ = {v1, v2, v3} denote a triangle of the face mesh
and ∆̃ = {ṽ1, ṽ2, ṽ3} be the corresponding triangle in the
texture mesh. For each triangle ∆, exactly one of the fol-
lowing situations may occur (see also Fig. 7):

Fig. 7. Color-coded triangles of the textured mesh: each green trian-
gle has at least one common photograph to which all of its vertices
are bound; the vertices of blue triangles don’t have a common pho-
tograph, but they are all bound; red triangles have at least one
unbound vertex

1. There exists at least one common photograph in the
sets of valid photographs of the three vertices v1, v2, v3
of ∆ (green triangles).

2. All of the vertices of ∆ are bound to at least one photo-
graph, but no common photograph can be found for all
three vertices (blue triangles).

3. At least one vertex of ∆ is not bound to any photograph
(red triangles).

In the first case, we rasterize ∆̃ in texture space. For
each texture element (texel) T , we determine its barycen-
tric coordinates ρ, σ, τ with respect to ∆̃ and compute
the corresponding normal N by interpolating the vertex
normals of ∆: N = ρN(v1)+σN(v2)+ τN(v3). For each
common photograph i in the sets of valid photographs of
all vertices of ∆, we compute the dot product between
N and the viewing direction Vi for the pixel Pi that cor-
responds to T . Finally, we color T with the color ob-
tained by the weighted sum of pixel colors

∑
i 〈N, Vi〉 ·

Color(Pi) /
∑

i 〈N, Vi〉.
In the second case, we color each vertex ṽj of ∆̃

individually by summing up the weighted pixel colors
of the corresponding pixels in all valid photographs i
of ṽj as in the first case: Color(ṽj) := ∑

i 〈N(vj), Vi〉 ·
Color(Pi) /

∑
i 〈N(vj), Vi〉. The texels of the rasterization

of ∆̃ are then colored by barycentric interpolation of the
colors of the vertices ṽ1, ṽ2, ṽ3. Alternatively, we tried to
use as much information as possible from the input pho-
tographs if, for instance, the vertices v1, v2 of ∆ share
a photograph and the vertices v2, v3 share another pho-
tograph. However, this situation always happens near the

silhouette of an object, and the extrapolation of a miss-
ing vertex on the photograph will be unstable. Neugebauer
and Klein [51] mention a similar situation. They recom-
mend the use of this kind of uv coordinate extrapolation,
since at least the boundary has plausible color, and this is
better than just a hole. We tried this extrapolation and then
performed our registration error detection scheme, and we
found that it fails in most cases. Therefore, the plain color
interpolation from reliable vertices usually produces much
better results in our case.

Since we do not require that each vertex of the face
mesh be bound to at least one photograph, there might
exist some vertices that cannot be colored by any of the
previously described schemes. We address this problem in
a two-stage process: first, we iteratively assign an inter-
polated color to each unbound vertex. Next, we perform
the color interpolation scheme from the second case for
the remaining triangles of ∆̃ that have not yet been col-
ored. The first step iteratively loops over all unbound and
uncolored vertices of the face mesh. For each unbound
vertex v, we check if at least p = 80 % of the vertices in
the one-ring around v are colored (either by being bound
to a photograph or by having an interpolated color). If this
is true, we assign to v the average color of all the colored
vertices around v; otherwise, we continue with the next
unbound vertex. We repeat this procedure until there are
no further vertex updates. Next, we start the same proced-
ure again, but this time, we only require p = 60 % of the
vertices in the one-ring around v be colored. As soon as
there are no more updates, we repeat this step twice again,
with p = 40 % and p = 20 %. Finally, we update each un-
bound vertex that has at least one colored neighbor. Upon
termination of this last step, all vertices of the face mesh
are either bound or colored, and the remaining triangles of
∆̃ can be colored.

This color interpolation method is fast and easy to im-
plement, and it can fill in all missing pixels. However,
texture detail can not be reconstructed by this scheme.
More sophisticated pixel filling methods – for example,
texture reconstruction – will be discussed in Sect. 5.

4.2 Combining images with resampling

If the input photographs have been taken under uncon-
trolled illumination, the color might differ noticeably be-
tween the images. In this case, boundaries might appear
in the resampled texture. We then apply a multiresolution
spline technique as proposed in Burt and Adelson [11]
and Lee and Magnenat-Thalmann [43] to remove visual
boundaries. Figure 8 shows a comparison between a tex-
tured head model with and without the multiresolution
spline technique applied. The multiresolution spline tech-
nique needs a mask to determine the overlapping region
that is resampled from different input photographs. We
propose an automatic computation method of this mask
for each region. Because we have the 3D model and its

Fig. 8. Boundaries in the skin texture (left) are removed using
multi-resolution spline techniques (right)

registration information, we can test the visibility of each
triangle on the input photographs to make a mask for the
combination. Then, we remove the outmost ring of tri-
angles around the region (see Fig. 9). Such shrinking is
necessary to ensure that there is still some valid color in-
formation on the outside of the mask boundary, because
these adjacent pixels might contribute to the color of the
boundary pixels during the construction of Gaussian and
Laplacian pyramids.

Fig. 9. Multi-resolution spline masks: input photographs from three
different view points (top), texture meshes resampled from their
corresponding photographs (middle), and their automatically gen-
erated masks shown in red (bottom)

We choose polygon resolution rather than pixel reso-
lution for this shrinking because of its simplicity and ro-
bustness against noise in the input photograph and inaccu-
racies during projection along the silhouette.

We generate a texture triangle by triangle. Since tex-
ture coordinates are assigned to each vertex through
OpenGL functions, triangle-based resampling is simpler
and more straight forward than pixel-based resampling.

For our validity test, we need to separate the back-
ground and foreground of the input photographs. We apply
a median filter and Gaussian denoising filter for the sepa-
ration. However, from our experience, pixel-based validity
tests are rather unreliable. Moreover, the calculation of
the 3D-to-2D backprojection near the object silhouette be-
comes inaccurate since the dot product of the normal of
the near-silhouette triangles and the view direction is close
to zero.

Therefore, we use a conservative method. If all three
backprojected vertices of a visible triangle in 2D are valid,
we set all pixels inside the triangle to be valid. Some of the
adjacent pixels of such a triangle might also be valid, but
since this is difficult to determine due to input noise and
backprojection inaccuracy, we simply discard them.

Here, we assume that each backprojected triangle in
2D covers several pixels. However, when the triangle
mesh is very dense and the resolution of the input image is
low, it might happen that a backprojected triangle covers
less than one pixel, in which case this method is prob-
lematic. However, this situation is unusual for texture
mapping. In the opposite extreme case, the mesh reso-
lution is too low and each triangle occupies a large area
in the 2D image. In this case, our method may discard
many potentially valid pixels. However, this means that
the model to be textured is rather simple geometrically,
and the problem is trivial.

In addition to the masks for each input photograph, we
create one more mask that is defined as the complement of
the sum of all of the other masks. This mask is used to-
gether with the resampled texture to provide some color
information in those regions that are not covered by any
input photographs (e.g., the inner part of the lips). As de-
scribed above, these regions have been filled by color in-
terpolation in the resampled texture. By blending all of the
masked input photographs and the masked resampled tex-
ture with the multiresolution spline technique, we obtain
a final texture with no visual boundaries and with crisp de-
tail. We use this additional mask for texture restoration to
distinguish missing regions in Sect. 5 since this mask indi-
cates if each pixel is resampled or not.

5 Texture restoration

In Sect. 4, we introduced the color interpolation method
to fill in a missing area. The method can produce smooth

color interpolation, but it is hard to reconstruct details like
texture.

If we can assume that our object being reconstructed
is easy to access and that it is static, we can acquire ad-
ditional photographs and register them until all pixel in-
formation is given by the photographs. However, some
objects like a human face are not static, and it is difficult to
take photographs under the same conditions, e.g., the same
lighting conditions. Moreover, some objects are difficult to
access – for instance, historically valuable objects or al-
ready lost objects – although several photographs of these
objects may remain. In these cases, if the total number of
missing pixels is relatively small, we should consider re-
constructing these missing pixels from given incomplete
information.

So far, there exist two main approaches to fill in miss-
ing pixels: image inpainting and texture synthesis. After
giving an overview of these methods, we propose a new
approach, which exploits the advantages of both existing
methods.

Image inpainting: Image inpainting methods [7, 53] are
based on a diffusion process to fill missing regions. Each
pixel value in the missing region is calculated from sur-
rounding pixels according to a partial differential equa-
tion. In one of the simplest cases, this partial differential
equation takes a Laplacian operator to “diffuse” surround-
ing pixels into the missing pixels.

An anisotropic diffusion method was proposed [7] by
Bertalmio et al. to deal with isophotolines. This method
can keep some kinds of edges in the input image. On the
other hand, Oliveira et al. [53] stated that there is no need
to keep isophotolines in almost all cases; however, when
the isophotolines should be kept, their method adds a dif-
fusion barrier manually.

Both methods work well in missing areas that are rela-
tively small or thin, like scratches, blotches, and areas of
text. However, a problem arises when the missing area is
large. Because these methods fill missing area with a con-
tinuous function by solving a partial differential equation,
the reconstructed area will become smooth. Therefore, if
the considered image contains small details, these details
will not be reconstructed by the diffusion process. Fig-
ure 15 includes a result of this method and shows that the
inpainting method deals well with text and scratches, but
fails in a large area.

Texture synthesis: Three main techniques are proposed to
synthesize texture:

1. procedural methods (e.g., fractal images);
2. stochastic methods (e.g., histogram equalization, N-

gram equalization);
3. non-parametric sampling methods.

If an image generation function is available or can
be assembled, procedural methods typically are the best

choice, since they usually result in resolution-free im-
ages. But it is usually difficult to find such a func-
tion.

We first deal with an arbitrary input; stochastic texture
synthesis methods are proposed to synthesize a texture.
Later, these methods are applied to image restoration
or image replacement [39]. These methods capture the
features of a texture through some certain stochastic meas-
urements (e.g., mean intensity value, or the histogram
distribution of the image). Then, all we need is sim-
ply a sample texture, not an image-generation function.
Even these methods can transfer some stochastic param-
eter from source image to target image; the image usually
needs some homogeneous structure, which can be handled
by this stochastic parameter [14, 33].

A non-parametric sampling texture synthesis method is
demonstrated in Fig. 10. This method gets an input source
image and generates a similar-looking destination image
as an output. In the texture synthesis process, a subim-
age Ndest , called the “neighborhood kernel,” is extracted
from the destination image, and a similar kernel Nsrc is lo-
cated in the source image, which then determines the des-
tination pixel color. The kernel shape in Fig. 10 is called
best-fit [28] or causal [76] kernel and is frequently used
for texture synthesis. The kernel has a reference point,
which is marked as “p” in Fig. 10. Several criteria have
been proposed for measuring similarity in order to find the
matching source kernel; for instance, Euclidean distance
(L2 norm), Manhattan distance (L1 norm), entropy, and so
forth. These distances are also dependent on the applied
color space model. When a kernel with the smallest dis-
tance has been detected, the pixel value of the reference
point is transferred from the source image to the destina-
tion image. This is repeated until all destination pixels are
copied.

This non-parametric sampling method also needs some
homogeneity in the source image. This method can cap-
ture the local detail information of the image by using
the kernel. The problem arises when the algorithm tries to

Fig. 10. Non-parametric sampling texture synthesis. The black
pixel “p” is the reference pixel of kernel N. The gray region of the
output image is the completed region

capture global structures of the source image, like a large
shadow region, because the algorithm uses a kernel of cer-
tain size to capture the features of the image. When a large
kernel is used to capture global features, the search space
becomes too small and loses the freedom to capture the
feature, since the source image size is fixed. This is a typi-
cal “curse of dimensionality” problem. Namely, we cannot
extract enough sampling information in the fixed-size data
source when the dimension of the sampling kernel be-
comes larger. To overcome this limitation, multiresolution
searching [77], coherent matching [2], or combinations of
both [34] have been proposed. Figure 15 includes a result
of this method and shows that the texture synthesis method
can reconstruct texture but fails to capture global struc-
tures.

Image restoration: Image inpainting and texture synthesis
methods assume an image as a height field and try to fill
in the missing part of the field. We can summarize both
methods in this context:

– Image inpainting method: the height field is re-
constructed with a certain continuous function. Global
structures are captured, but local detail information is
usually lost.

– Texture synthesis method: similar height field pat-
terns are looked up using a small kernel and transferred
during reconstruction. Some local details, like a texel,
are captured, but global structures cannot usually be
reproduced.

Image inpainting methods are good at reconstruct-
ing global structure in an image, and texture synthesis
methods are good at reconstructing local details of an
image. These methods appear to be complementary; how-
ever, they are not based on the same mathematical theory:
one is based on a partial differential equation, and the
other is based on a non-parametric search. In order to com-
bine them, we need further study.

Let us consider these properties in a signal-processing
context:

– Image inpainting method: The lower-frequency part
of an image is reconstructed.

– Texture synthesis method: The higher-frequency
part of an image is reconstructed.

Since the lower-frequency part of an image repre-
sents the global structure of the image and the higher-
frequency part represents the local structure of the image,
we propose a method that combines the advantages of
both image inpainting and texture synthesis without in-
heriting their disadvantages. The main idea is that an
input image is first decomposed into a lower-frequency
part and a higher-frequency part by a frequency decom-
position technique, e.g., a Fourier transform. Then, the

lower-frequency part is reconstructed by the image in-
painting method, and the higher-frequency part is recon-
structed by the non-parametric sampling texture synthesis
method. Finally, both reconstructed images are combined
to obtain the overall result. Here, we will explain an en-
hanced method based on [79], which includes a rotation-
invariant search method and a shrink order reconstruc-
tion method. In Oh et al. [52], the authors used a bilat-
eral filter to extract the illumination structure. The filter
smoothes out small details while it keeps sharp shadow
edges. This method works well for image editing – for
instance, for relighting images. However, for our pur-
poses, keeping sharp shadow edges is not preferable, since
sharp edges include a high-frequency component. Because
the texture synthesis method has a much higher poten-
tial to reconstruct the high-frequency component than
a diffusion-based process, we apply a frequency decom-
position method and combine the two techniques de-
scribed above.

5.1 Image restoration algorithm overview

First, we need to determine the missing region in a tex-
ture image. In the usual case, classification of a missing or
defect region of an input image is subjective. Therefore,
this information should be given by a user. On the other
hand, in our face model example, the missing parts are
previously known, as we described at the end of Sect. 4.
However, the proposed image restoration algorithm is in-
dependent of how the image is created and how regions to
be filled in are detected.

We need two inputs for this algorithm. One is the input
image I and the other is a binary mask M, which stores the
identifying information of the region to be reconstructed,
i.e., for each pixel in I , we have a corresponding binary
value in M.
Our algorithm proceeds as follows (see Fig. 11):

1. The input image I is decomposed into a high-frequency
part H and a low-frequency part L using a discrete co-
sine transformation (DCT) (see Sect. 5.2).

2. The fast image inpainting algorithm proposed in
Oliveira et al. [53] is applied to the interior of the
masked areas of the low-frequency image L to obtain
the inpainted image L∗. During this step, information
from the entire input image may be used by the image
inpainting algorithm. Here, only the pixels inside the
masked areas will be modified.

3. The high-frequency image H is decomposed into
a Gaussian pyramid with n +1 levels Hi (i = 0, . . ., n).
Section 5.3 provides some more details about this step.

4. Starting from the highest level Hn , we apply multi-
resolution texture synthesis [77] inside the masked
areas in Hi (i = n, . . . , 0):
4.1. First, a kD-tree for fast nearest neighbor lookup

is built [1]. However, the search space for tex-

Fig. 11. Overview of our method. Top to bottom: the input image I
is decomposed into a high-frequency image H and a low-frequency
image L using a DCT. Image inpainting is applied to the low-
frequency part L to obtain the inpainted image L∗. The high-
frequency part H is decomposed into a Gaussian pyramid (shown
up to level 2 in this example). Starting from the highest level (H2),
multi-resolution texture synthesis is applied to the masked areas of
the levels Hi . For each level, the neighborhood vector for the tex-
ture synthesis (see [77]) is composed of the kernels of that level and
of all higher levels. In this way, coherence is maintained through-
out all texture synthesis levels. Finally, the resulting high-frequency
image H∗

0 and the low-frequency image L∗ are summed up to yield
the restored image I∗

ture synthesisin level Hi not only contains the
non-masked areas of Hi , but also includes the
corresponding areas of the already synthesized
higher levels H∗

k (k = i +1, . . . , n). To obtain the
source image for the highest level Hn , we simply
apply the complementary mask Mn to Hn .

4.2. Texture synthesis is applied inside the masked
area of Hi . The neighborhood vector ([77]),

Fig. 12. Multi-resolution texture synthesis. Left to right: input image I ; inpainted low-frequency image L∗; two levels (H0, H1) of the
Gaussian decomposition of the high-frequency image H; the same two levels after texture synthesis (H∗

0 , H∗
1). The detailed images Hi

and H∗
i (i = 0, 1) are shown with gamma correction to emphasize the high-frequency detail. The restored image I∗ is shown in the bottom

right of Fig. 15. (The original texture was obtained from the VisTex web Page, Copyright 1995 MIT)

which is used to perform a lookup in the kD-
tree, is composed of the pixel information from
the texture synthesis kernel in level Hi and of
all corresponding kernels from the higher levels
H∗

k (k = i +1, . . . , n). This ensures high coher-
ence among all texture synthesis levels.

More details about this texture synthesis step are given
in Sect. 5.4.

5. The synthesized high-frequency image H∗
0 and the in-

painted low-frequency image L∗ are summed up to
yield I∗, which represents the restored version of the
input image I .

Details of our implementation are given in the next sec-
tions. Figure 12 shows some of the intermediate levels of
our algorithm for a sample input image.

5.2 Frequency decomposition

In the first step of our algorithm, the input image I is de-
composed into a set of spectral subbands using a discrete
cosine transform (DCT).

We select the first κ subbands and compute the in-
verse DCT of this subset. The resulting image is used
as the low-frequency image Lκ . The corresponding high-
frequency image Hκ is obtained by subtraction: Hκ :=
I − Lκ . Obviously, the parameter κ determines an upper
bound for the (low) frequencies that are contained in Lκ .
Our goal is to have as much detail (i.e., as much high-
frequency information) as possible in Hκ, while making
sure that low-frequency gradients are completely con-
tained in Lκ .

We assume two hypotheses to find a suitable frequency
parameter κ as follows:

1. If the lower-frequency part of an image is adequately
eliminated, the rest of the image will be more homoge-
neous;

2. Homogeneity of an image can be measured by calcu-
lating the autocorrelation matrix of an image.

Fig. 13. Standard deviations of the autocorrelation matrices Aκ

of the input images shown in Fig. 17 plotted over the range of
κ = 1, . . . , 16

To this end, we compute the autocorrelation matrix5 Aκ of
Hκ: Aκ := DCT−1(DCT(Hκ) ·DCT(Hκ)).

For a non-square input image I , we pad Hκ with ze-
ros to obtain a square matrix H ′

κ and clip the zeroed bor-
der of the resulting A′

κ := H ′
κ · H ′

κ . Next, we compute the
standard deviation of the elements of the autocorrelation
matrix Aκ. Figure 13 shows the standard deviations of the
elements of the autocorrelation matrices of the input im-
ages shown in Fig. 17. They are plotted over the range of
κ = 1, . . . , 16. We found that choosing the lowest κ value
that yields a standard deviation of less than 0.001 gives
good results in general.

The effect of κ is shown in Fig. 16. When κ goes
to zero, our method is identical to the texture synthesis
method, which is shown in Fig. 15. For large values of
κ, our method is similar to the inpainting method, since
the extracted higher frequency part becomes negligible.

5 The autocorrelation matrix A of a matrix H is defined as A :=
DCT−1(DCT(H) ·DCT(H)), where H denotes the conjugate of H . In our
case, the matrices Hκ (and thus also DCT(Hκ)) contain real numbers only,
because we use DCT to decompose the input image.

Therefore, there might be an optimal κ value that can ex-
tract enough large structure as a low-frequency part, but
can still keep the small details.

We use the Y channel of XYZ CIE color model for
this analysis, since the large structures of an image, such
as shadows, are usually most prominent in the Y chan-
nel [27].

5.3 Gaussian decomposition

The decomposition of the high-frequency image H into
a Gaussian pyramid is based on an approach proposed by
Burt and Adelson [11]. In particular, we employ the pro-
posed 5 × 5 Gaussian kernel ω with the recommended
parameter value a = 0.4:

ω(u, v) = ω̂(u) ω̂(v)

ω̂(0) = 0.4, ω̂(±1) = 0.25, ω̂(±2) = 0.05

The pyramid decomposition proposed in Burt and
Adelson [11] requires that the input image have a reso-
lution of (p 2N +1)× (q 2N +1) pixels (p, q, N ∈ N) to
ensure that a Gaussian pyramid of N +1 levels may be
constructed. In our case, we may safely terminate the
pyramid decomposition at a level n 	 N + 1. This can
be explained as follows: during the texture synthesis in
level i , we include the pixel information from the kernels
of all higher levels i +1, . . . , n into the nearest-neighbor
search. To be successful, however, the search needs to
have enough candidates (contiguous groups of pixels).
Thus, the size of the smallest Hn must not be too small. In
practice, we obtained good results for pyramid decompo-
sitions up to level three. As a consequence, the resolution
of the input image I is practically unrestricted for our
method.

5.4 Texture synthesis

For the texture synthesis (step 4 in Sect. 5.1), we im-
plement and test the approaches presented by Efros and
Leung [21], Wei and Levoy [77], and Ashikhmin [2]. Fi-
nally, we implement the approach proposed in Hertz-
mann et al. [34], which basically switches between the
texture synthesis algorithms from Wei and Levoy [77] and
Ashikhmin [2] from level to level, depending on a local
distance criterion. During the texture synthesis in level Hi ,
we typically use the 5×5 best-fit/causal kernel from Gar-
ber [28] and Wei and Levoy [77] within Hi , a standard 3×
3 kernel for level Hi+1, and a 1 ×1 kernel for the higher
levels Hk (k = i +2, . . . , n).

Multiresolution texture synthesis is applied inside the
masked areas of each level Hi (i = n, . . . , 0). The com-
plementary part of Hi (i.e., the part of Hi that is outside
the masked areas) is used as the source image. Since the
Hi differs in size from level to level, the mask has to

be adapted. Let M0 := M denote the user-defined binary
mask in the size of the input image. We decompose this
mask into a Gaussian pyramid up to level n using the same
approach and kernel as for the image data (see Sect. 5.3).
This operation is carried out using floating-point arith-
metic with 1.0 and 0.0 representing true and false for
the initial level M0, respectively. Thus, the higher lev-
els Mi (i = 1, . . . , n) contain blurry images of the initial
mask M. Next, we quantize every Mi back into a binary
mask such that 0.0 maps to false and any other value in
[0, 1] is mapped to true. Given that the number of levels
of the pyramid is typically three or four in our application,
the clear distinction between 0.0 and any value larger than
zero is not an issue with a single-precision floating point.

Image reconstruction order: The reconstruction pixel
order usually has an influence on the result [18, 32], ex-
cept for highly homogeneous texture [78]. Also, when the
kernel shape is not symmetric (e.g., for a bestfit/causal
kernel), the orientation of the kernel affect the result.

This is why we implemented multiple reconstruction
orders: scanline order type 1 (one way; +x direction),
scanline order type 2 (alternating ways; +x and −x di-
rections), and shrinking order. The “shrinking” order fills
a hole in a manner such that the hole is shrinking. First,
we calculate a distance map inside of the hole. Each pixel
of this map has a Manhattan distance to the boundary of
the hole. Then the reconstruction order follows the dis-
tance. In our experience, we found that the shrinking order
usually produces the best results.

There is one issue in this hole-filling process. If the
missing hole has a concave shape and the kernel shape
does not fit within the boundary, we cannot extract the
neighborhood kernel. In this case, this missing pixel will
remain, and its distance will be increased by one, to be
filled in the next iteration.

However, when the causal/causal kernel is used to find
a similar kernel, this kernel sometimes does not fit the hole
boundary, since it is designed for scanline order recon-
struction. Therefore, we use eight different orientations of
the causal/causal kernel (see Fig. 14). During the image

Fig. 14. Eight different orientations of the 5×5 best-fit/causal ker-
nel. The reference point is the filled square

analysis phase (refer to Sect. 5.1, step 4.1), all eight of
these kernels are used to analyze the source image and
eight kD-trees are generated. In the reconstruction phase
(refer to Sect. 5.1, step 4.2), a possible kernel, which is
fit to the hole boundary, is extracted from the destination
image. Then, we look up the corresponding kD-tree of the
extracted kernel and find the closest kernel.

This algorithm can shrink any holes, even if the bound-
ary is concave. Consider a texture that is synthesized in
a scanline order fashion. Then all possible holes would
be filled if the top left pixel can be filled. The scanline
order is a special case of shrinking order. Therefore, this
hole-filling is always possible. Here, we assume that it
is possible to fill the first missing pixel. This means we
have at least a non-missing subimage that fits the neigh-
borhood kernel. We think this assumption is reasonable,
since the neighborhood kernel is usually 5×5 or a similar
size. However, we usually need more non-missing pixels
to get a better result in practice.

Another advantage of using shrinking order to fill holes
is that we can use fixed-shape-fixed-size kernels for any
arbitrary boundary shapes. This means we can still use
kD-trees for searching. A kernel of arbitrary shape is more
powerful and can exploit the all non-missing pixel infor-
mation. However, this cannot fit the kD-tree search al-
gorithm since you cannot query a vector by changing its
size and structure. Furthermore, it is not practical to gen-
erate all kD-trees corresponding to all patterns and store
them in memory, because the total number of kernels
of arbitrary shape is the sum of the binomial function.
Some methods [18, 50] use a kernel of arbitrary shape for
their search, which yields a linear search with compu-

Fig. 15. Comparison between texture synthesis, image inpainting, and our method for input images with texture (top row) and with tex-
ture and additional intensity gradient (bottom row). Each row, from left to right: input image (damaged areas are masked out); resulting
images from texture synthesis [77], from image inpainting [53], and from our new method

tational complexity of O(n2), which is larger than the
O(n log n) complexity of the kD-tree search. Although the
fixed shape kernel approach might miss some information
during the search, we think this is a good compromis-
ing point considering the rotation-invariant search and the
computation speed.

Figure 15 shows a comparison of texture synthe-
sis [77], image inpainting [53], and our approach. The
reconstruction order in texture synthesis is scanline order
as proposed in Wei and Levoy [77]. Both texture synthesis
and image inpainting treat small scratches and thin areas
well, i.e., text regions. Limitations of texture synthesis and
image inpainting arise when large areas are missing. This
point is also stressed in Drori et al.[18], where the tex-
ture reconstruction from real objects is investigated. In
this problem, some continuous missing area – rather than
small scratch or blotches – usually exists. Because of this,
we need a method to reconstruct large structures and small
details.

Our algorithm is controlled by two different parame-
ters: the number of DCT subbands (κ), from which the
low-frequency image Lκ is computed (refer to Sect. 5.2),
and the number of levels (n +1) in the Gaussian decom-
position of the high-frequency image (refer to Sect. 5.1).
In practice, we obtained very good results when choosing
the lowest κ value that yields a standard deviation of less
than 0.001, as described in Sect. 5.2. Thus, the choice of
κ is fully automated in our approach. The optimal num-
ber of levels in the Gaussian decomposition is somewhat
hard to predict, though. In general, we obtained good re-
sults when using three or four levels, i.e., setting n = 2
or n = 3.

Fig. 16. Effect of the value of κ. When κ is equal to zero, this method is identical to the texture synthesis method, since no low- fre-
quency part is extracted. When κ is maximum, this method is identical to the image inpainting method, since, in this case, all frequency
components are treated as a low-frequency part. An optimal κ is between the extremes. We use a coherence parameter [34] of 10

Fig. 17. Top row: input images with masked areas. Bottom row: restored images (see also Sect. 6). The parameter κ (= number of DCT
subbands used to compute the low-frequency image Lκ) has been chosen automatically according to our autocorrelation metric (see
Sect. 5.2). n is the highest multiresolution level. The level starts from 0

Figure 17 shows some results obtained with our method.
Each input image is shown with its mask applied. For
the purpose of illustration, the color of each mask has
been chosen to differ significantly from the content
of the input image. We found that the restored im-
ages look plausible in general. In some cases, we ob-
tained results that looked surprisingly good. One ex-
ample is the table image (Fig. 17, right column), where
the highlight that is reflected from the marble floor is
restored very well after the masked tables have been
removed. We have not performed numerical compar-
isons of the results of different image restoration tech-
niques, though. We believe that a simple RMS com-
parison is useless in the context of image restoration,
since it does not take into account relevant perception
issues.

In our approach, we applied image inpainting to handle
intensity gradients in the input images. During our sim-
ulations, we found that multiresolution texture synthesis
alone can solve the intensity variation problem to a cer-
tain extent. However, the cases of the missing areas are
relatively larger and more irregularly shape, using image

inpainting in additional to multiresolution texture synthe-
sis is more favorably.

Currently, our implementation is rather experimental:
no optimizations have been performed, and the timings
require the gathering of quite a lot of statistical data. All
timings were collected on a 1.7 GHz Pentium 4 PC and are
given for an input image size of 600×450 pixels. The time
required to restore an image depends heavily on the per-
centage of the masked pixels. In our simulations, we typ-
ically used masks that covered 4–6 % of the input image.
For these masks, our algorithm took about 5–10 minutes to
complete (including I/O). The initial fast image inpainting
took 4–20 seconds, depending on the convergence of the
(iterative) inpainting algorithm.

6 Results

Figure 18 shows the results of our face reconstruction
applied to two face models. The presented method is
fully automatic except for registering a 3D scanned model

Fig. 18. Face reconstruction results. In parameterization ((a.2), (b.2)), visual importance parameter k = 1.5 and triangle shape ratio α =
0.05. In image restoration, frequency parameter κ = 4 (a.5) and κ = 5 (b.5). These κs are automatically calculated by the criteria given in
Sect. 5

with photographs. In this example, we process 3D range
scan data according to the method presented by Kähler
et al. [40] in order to obtain the input mesh, and reg-
ister photographs to the mesh by hand. Figures 18 (a.2)
and (b.2) are the parameterization results using geometric
stretch energy with triangle shape (height-baseline) ratio
α = 0.05 and visual importance factor k = 1.5 in Eq. 2,
where the view vector is directed to see the front face.
Resampling results are found in the same figure (Figs. 18
(a.3) and (b.3)). Blue pixels indicate that the surface re-
gions for which the input photographs do not provide any
information, i.e., there is no photograph where the sur-
face points are visible. Figures 18 (a.4) and (b.4) show
the color interpolation results after filling in the hole as
described in Sect. 4, while in Figs. (a.5) and (b.5), the
missing parts are reconstructed using the proposed image
restoration techniques as described in Sect. 5. The fre-
quency decomposition parameters are κ = 4 in (a.5) and
κ = 5 in (b.5). These κs are calculated with the crite-
ria as described in Sect. 5.2. In Figs. 18 (a.6) and (b.6),
the texture-mapped 3D models are presented. We use five
photographs as the input – namely, the front, left, right,
back, and upper front view. An example of front, left,
and right inputs is given in Fig. 9. If we render the re-
constructed model from a view that is found in the in-
put photographs, it is clear that this is a simple prob-
lem, as all information can be found in one of the in-
put photographs. The problem becomes more interest-
ing when we render novel views such as Figs. (a.6.1),
(a.6.3), (b.6.1), and (b.6.3). On these pictures, we can see
the combined images from several (three or four) differ-
ent input photographs. The images demonstrate that the
reconstruction quality compares very well to the input
images.

Figure 19 shows the comparison of the color interpo-
lation method and the image restoration method. You can
find the areas enclosed by blue lines on Figs. 18 (a.3) and
(b.3). Although these regions have no input information,
both methods can reproduce colors. In addition, the image
restoration method reconstructs some texture.

7 Conclusions and future work

We have proposed a method to generate textures from
3D geometry models and individual uncalibrated pho-
tographs. Our method requires no user interaction for most
processing steps. Only the feature registration step re-
quires interactive specification of a few feature points.

Our approach consists of three subtasks: parameteriza-
tion, texture combination, and texture restoration.

For the parameterization, we introduced two signal
terms for the geometry stretch energy method: the visual
importance term and the triangle shape term. The visual
importance term defines the importance of the texture for
efficient use of the texture area. The triangle shape term is

Fig. 19. Comparison of the color interpolation method and the
image restoration method. Inside the areas delineated by the blue
lines, there is no texture information. The bottom row is zoomed-in
view of the upper part of the ear in the middle row. (see (a.3) and
(b.3) in Fig. 18)

for alleviating the parameter crack problem of L2 geomet-
ric stretch parameterization.

For the texture resampling problem, we apply the
multiresolution spline technique to delete the boundary
artifacts, which come from different illumination condi-
tions of input photographs. We need masks to apply the
multiresolution spline technique. In our case, these masks
have complex shapes. We propose the automatic mask
generation method using registered 3D model informa-
tion.

Texture restoration is needed because sometimes we
cannot find pixel information on input photographs by reg-
istration error or occlusion. In our case, taking some more
pictures to fill in such missing pixel information might not
be a good solution, because the human face is a dynamic
object, and it is hard to reproduce exactly the same face.

Therefore, introducing more pictures may add to the error.
Moreover, a face has view-dependent reflection compon-
ent (e.g., specular reflection component); this makes it
difficult to control the illumination condition.

To solve this problem, we introduced a color interpola-
tion method, which exploits the 3D mesh topology to fill
in the missing pixels, and an image restoration method,
which combines image inpainting with texture synthesis
by using frequency analysis. We also demonstrated that
this image resolution method is useful for a variety of de-
fective images.

A remaining problem is the automatic generation of
a robust registration method of a 3D model with corres-
ponding input photographs.

Other future work for each subproblem is as follows:

– Parameterization: We gave two kinds of signals.
Each signal parameter is decided experimentally.
A promising research direction would be to find opti-
mal parameter values to fine-tune the signals.

– Texture combination: We solved the boundary prob-
lem by the multiresolution spline technique. This
method connects discontinuity regions with a certain
continuous function. However, the discontinuity comes
from the difference in illumination conditions. Some

techniques have been proposed to eliminate the view-
dependent element of illumination [15, 48]. We believe
that these methods could improve our results further.
We used a triangle-based mask shrinking method,
which is simple to implement and robust to noise.
However, image resolution and projected triangle area
might not match. We are currently investigating shrink-
ing methods taking into account image resolution.

– Texture restoration: We reconstructed the missing
parts of the input image using its boundary informa-
tion. Therefore, the reconstruction may not be stable
for certain complex boundary conditions. We are plan-
ning to investigate a robust method that can exploit the
global structure in order to reliably reconstruct images.
In this paper, we focused on a fully automatic method.
However, if we can utilize some user-guided infor-
mation for reconstruction, a higher quality may be
obtained. For example, in Zhang et al. [83], a user
can prescribe feature information (a texton mask),
a rotation vector, and a transition function. Such user-
defined guidance may improve the reconstruction qual-
ity and also give some freedom to the user to control
the results.

Acknowledgement This work has been partially funded by the
Max Planck Center for Visual Computing and Communication.

References
1. Arya S, Mount DM, Netanyahu NS,

Silverman R, Wu AY (1998) An optimal
algorithm for approximate nearest neighbor
searching in fixed dimensions. J ACM
46(6):891–923

2. Ashikhmin M (2001) Synthesizing natural
textures. In: Proceedings of the 2001 ACM
Symposium on Interactive 3D Graphics,
March 19–21 2001, pp 217–226

3. Ballester C, Bertalmio M, Caselles V,
Sapiro G, Verdera J (2001) Filling-in by
joint interpolation of vector fields and gray
levels. IEEE Trans Image Process
10(8):1200–1211

4. Balmelli L, Taubin G, Bernardini F (2002)
Space-optimized texture maps.
Eurographics 21(3):411–420

5. Bar-Joseph Z, El-Yaniv R, Lischinski D,
Werman M (2001) Texture mixing and
texture movie synthesis using statistical
learning. IEEE Trans Visual Comput Graph
7(2):120–135

6. Bennis C, Vézien J-M, Iglésias G (1991)
Piecewise surface flattening for
non-distorted texture mapping. In:
Computer Graphics, SIGGRAPH ’91
Conference Proceedings, pp 237–246

7. Bertalmio M, Sapiro G, Caselles V,
Ballester C (2000) Image inpainting. In:
Computer Graphics, SIGGRAPH ’00
Conference Proceedings, pp 417–424

8. Blinn JF (1978) Simulation of wrinkled
surfaces. In: Computer Graphics,
SIGGRAPH ’78 Conference Proceedings,
pp 12:286–292

9. Blinn JF, Newell ME (1976) Texture and
reflection in computer generated images.
Commun ACM 19(10):542–547

10. Brooks S, Dodgson N (2002)
Self-similarity based texture editing. ACM
Trans Graph, pp 653–656

11. Burt PJ, Adelson EH (1983)
A multi-resolution spline with application
to image mosaics. ACM Trans Graph
2(4):217–236

12. Cignoni P, Montani C, Rocchini C,
Scopigno R, Tarini M (1999) Preserving
attribute values on simplified meshes by
resampling detail textures. Vis Comput
15(10):519–539

13. Cohen MF, Shade J, Hiller S, Deussen O
(2003) Wang tiles for image and texture
generation. ACM Trans Graph
22(3):287–294

14. De Bonet JS (1997) Multiresolution
sampling procedure for analysis and
synthesis of texture images. In: Computer
Graphics, SIGGRAPH ’97 Conference
Proceedings, pp 361–368

15. Debevec PE, Hawkins T, Tchou C, Duiker
H-P, Sarokin W, Sagar M (2000) Acquiring
the reflectance field of a human face. In:
Computer Graphics, SIGGRAPH ’00
Conference Proceedings, pp 145–156

16. Desbrun M, Meyer M, Alliez P (2002)
Intrinsic parameterizations of surface
meshes. In: Eurographics 2002 Conference
Proceedings 21(3):209–218

17. Desbrun M, Meyer M, Schröder P, Barr
AH (1999) Implicit fairing of irregular

meshes using diffusion and curvature flow.
In: Computer Graphics, SIGGRAPH ’99
Conference Proceedings, pp 33:317–324

18. Drori I, Cohen-Or D, Yeshurun H (2003)
Fragment-based image completion. ACM
Trans Graph 22(3):303–312

19. Duchamp T, Certain A, DeRose A, Stuetzle
W (1997) Hierarchical computation of PL
harmonic embeddings. Technical report,
University of Washington

20. Eck M, DeRose T, Duchamp T, Hoppe H,
Lounsbery M, Stuetzle W (1995)
Multiresolution analysis of arbitrary
meshes. In: Computer Graphics,
SIGGRAPH ’95 Conference Proceedings,
pp 173–182

21. Efros A, Leung T (1999) Texture synthesis
by non-parametric sampling, pp 1033–1038

22. Efros AA, Freeman WT (2001) Image
quilting for texture synthesis and transfer.
In: Computer Graphics, SIGGRAPH ’01
Conference Proceedings, pp 341–346

23. Fleischer K, Laidlaw D, Currin B, Barr A
(1995) Cellular texture generation. In:
Computer Graphics, SIGGRAPH ’95
Conference Proceedings, pp 239–248

24. Floater MS (1997) Parametrization and
smooth approximation of surface
triangulations. Comput Aided Geom Des
14:231–250

25. Floater MS (2003) Mean value coordinates.
Comput Aided Geom Des 20(1):19–27

26. Floater MS, Hormann K (2004) Surface
parameterization: a tutorial and survey. In:
Advances on multiresolution in geometric

modelling. Springer, Berlin Heidelberg
New York, pp 259–284

27. Foley J, van Dam A, Feiner S, Hughes J
(1992) Computer graphics principles and
practice, 2nd edn. Addison-Wesley, Boston

28. Garber DD (1981) Computational models
for texture analysis and texture synthesis.
Dissertation, University of Southern
California

29. Greene N (1986) Environment mapping
and other applications of world projection.
IEEE Comput Graph Appl 6(11):21–29

30. Guskov I, Vidimce K, Sweldens W,
Schröder P (2000) Normal meshes. In:
Computer Graphics, SIGGRAPH ’00
Conference Proceedings, pp 95–102

31. Haker S, Angenent S, Tannenbaum A,
Kikinis R, Sapiro G, Halle M (2000)
Conformal surface parameterization for
texture mapping. IEEE Trans Visual
Comput Graph 6(2):181–189

32. Harrison P (2001) A non-hierarchical
procedure for re-synthesis of complex
textures. In: WSCG 2001 Conference
Proceedings, Plyen, Czech Republic, pp
190–197

33. Heeger DJ, Bergen JR (1995)
Pyramid-based texture analysis/synthesis.
In: Computer Graphics, SIGGRAPH ’95
Conference Proceedings, pp 229–238

34. Hertzmann A, Jacobs CE, Oliver N,
Curless B, Salesin DH (2001) Image
analogies. In: Computer Graphics,
SIGGRAPH ’01 Conference Proceedings,
pp 327–340

35. Hirani AN, Totsuka T (1996) Combining
frequency and spatial domain information
for fast interactive image noise removal. In:
Computer Graphics (SIGGRAPH ’96
Conference Proceedings), pp 269–276

36. Hoppe H (1996) Progressive meshes. In:
Computer Graphics, SIGGRAPH ’96
Conference Proceedings, pp 99–108

37. Hormann K, Greiner G (2000) Mips: an
efficient global parametrization method. In:
Laurent PJ, Sablonnière P, Schumaker LL
(eds), Curve and surface design:
Saint-Malo 1999. Vanderbilt University
Press, Nashville pp 153–162.

38. Igarashi T, Cosgrove D (2001) Adaptive
unwrapping for interactive texture painting.
In: Proceedings of the 2001 Symposium on
Interactive 3D graphics, pp 209–216

39. Igehy H, Pereira L (1997) Image
replacement through texture synthesis. In:
Proceedings of the IEEE International
Conference on Image Processing 3:186–189

40. Kähler K, Haber J, Yamauchi H, Seidel
H-P (2002) Head shop: generating
animated head models with anatomical
structure. In: Proceedings of the 2002 ACM
SIGGRAPH Symposium on Computer
Animation, San Antonio, USA, pp 55–64

41. Khodakovsky A, Litke N, Schröder P
(2003) Globally smooth parameterizations
with low distortion. ACM Trans Graph
22(3):350–357

42. Lee AWF, Sweldens W, Schröder P, Cowsar
L, Dobkin D (1998) Maps: Multiresolution
adaptive parameterization of surfaces. In:

Computer Graphics, SIGGRAPH ’98
Conference Proceedings, pp 95–104

43. Lee W-S, Magnenat-Thalmann N (2000)
Fast head modeling for animation. Image
Vis Comput 18(4):355–364

44. Lévy B (2001) Constrained texture
mapping for polygonal meshes. In:
Computer Graphics, SIGGRAPH ’01
Conference Proceedings, pp 417–424

45. Lévy B, Petitjean S, Ray N, Maillot J
(2002) Least squares conformal maps for
automatic texture atlas generation. ACM
Trans Graph 21(3):362–371

46. Liang L, Liu C, Xu Y-Q, Guo B, Shum
H-Y (2001) Real-time texture synthesis by
patch-based sampling. In: Computer
Graphics, SIGGRAPH ’01 Conference
Proceeding 20(3):127–150

47. Maillot J, Yahia H, Verroust A (1993)
Interactive texture mapping. In: Computer
Graphics, SIGGRAPH ’93 Conference
Proceedings, pp 27–34

48. Marschner SR, Westin SH, Lafortune EPF,
Torrance KE, Greenberg DP (1999)
Image-based BRDF measurement including
human skin. In: Proceedings of the 10th
Eurographics Workshop on Rendering, pp
131–144

49. Miyata K (1990) A method of generating
stone wall patterns. In: Computer Graphics,
SIGGRAPH ’90 Conference Proceedings,
pp 387–394

50. Nealen A, Alexa M (2003) Hybrid texture
synthesis. In: Proceedings of the 13th
Eurographics workshop on Rendering, pp
97–105

51. Neugebauer PJ, Klein K (1999) Texturing
3D models of real world objects from
multiple unregistered photographic views.
Eurographics 18(3):C245–C256

52. Oh BM, Chen M, Dorsey J, Durand F
(2001) Image-based modeling and photo
editing. In: Computer Graphics,
SIGGRAPH ’01 Conference Proceedings,
pp 433–442

53. Oliveira MM, Bowen B, McKenna R,
Chang YS (2001) Fast digital image
inpainting. In: Proceedings of the
International Conference on Visualization,
Imaging and Image Processing (VIIP
2001), pp 261–266

54. Pérez P, Gangnet M, Blake A (2003)
Poisson image editing. ACM Trans Graph
22(3):313–318

55. Perona P, Malik J (1990) Scale-space and
edge detection using anisotropic diffusion.
IEEE Trans Pattern Anal Mach Intell
PAMI-12(7):629–639

56. Pighin F, Hecker J, Lischinski D, Szeliski
R, Salesin DH (1998) Synthesizing realistic
facial expressions from photographs. In:
Computer Graphics, SIGGRAPH ’98
Conference Proceedings, pp 75–84

57. Piponi D, Borshukov G (2000) Seamless
texture mapping of subdivision surfaces by
model pelting and texture blending. In:
Computer Graphics, SIGGRAPH ’00
Conference Proceedings, pp 471–478

58. Popat K, Picard RW (1993) Novel
cluster-based probability model for texture

synthesis, classification, and compression.
In: Proceedings of SPIE Visual
Communications and Image Processing
2094:756–768

59. Praun E, Hoppe H (2003) Spherical
parametrization and remeshing. ACM Trans
Graph

60. Rocchini C, Cignoni P, Montani C,
Scopigno R (1999) Multiple textures
stitching and blending on 3D objects. In:
Proceedings of the 10th Eurographics
Workshop on Rendering, pp 127–138

61. Saint-Marc P, Chen JS, Medioni G (1991)
Adaptive smoothing: a general tool for
early vision. IEEE Trans Pattern Anal
Mach Intell 13(6):514–529

62. Sander PV, Snyder J, Gortler SJ, Hoppe H
(2001) Texture mapping progressive
meshes. In: Computer Graphics,
SIGGRAPH ’01 Conference Proceedings,
pp 409–416

63. Sander PV, Gortler SJ, Snyder J, Hoppe H
(2002) Signal-specialized parametrization.
In: Proceedings of the 13th Eurographics
Workshop on Rendering, 26–28 June 2002,
pp 87–98

64. Shannon C (1948) A mathematical theory
of communication. Bell Syst Tech J
27(3):379–423

65. Sheffer A, de Sturler E (2000)
Parameterization of faceted surfaces for
meshing using angle based flattening. Eng
Comput 17(3):326–337

66. Sheffer A, Hart JC (2002) Seamster:
inconspicuous low-distortion texture seam
layout. In: Proceedings of IEEE
Visualization ’02, pp 291–298

67. Simoncelli E, Portilla J (1998) Texture
characterization via joint statistics of
wavelet coefficient magnitudes. In: Fifth
IEEE International Conference on Image
Processing, Volume I, Chicago, 4–7
October 1998, pp 62–66

68. Smith SM, Brady JM (1995) SUSAN –
A new approach to low level image
processing. Technical Report TR95SMS1c,
Defence Research Agency, Chertsey,
Surrey, UK

69. Soler C, Cani M-P, Angelidis A (2002)
Hierarchical pattern mapping. ACM Trans
Graph, pp 673–680

70. Sorkine O, Cohen-Or D, Goldenthal R,
Lischinski D (2002) Bounded-distortion
piecewise mesh parameterization. In:
Proceedings of IEEE Visualization ’02, pp
355–362

71. Soucy M, Godin G, Rioux M (1996)
A texture-mapping approach for the
compression of colored 3D triangulations.
Vis Comput 12(10):503–514

72. Szummer M, Picard RW (1996) Temporal
texture modeling. In: ICIP, Lausanne,
Switzerland, volume 3, pp 823–826

73. Tarini M, Yamauchi H, Haber J, Seidel H-P
(2002) Texturing faces. In: Proceedings of
Graphics Interface 2002, Calgary, Canada,
pp 89–98

74. Tomasi C, Manduchi R (1983) Bilateral
filtering for gray and color images. In:
ICCV-98, 4–7 January 1998, pp 839–846

75. Turk G (1991) Generating textures on
arbitrary surfaces using reaction-diffusion.
In: Computer Graphics, SIGGRAPH ’91
Conference Proceedings, pp 289–298

76. Turk G (2001) Texture synthesis on
surfaces. In: Computer Graphics,
SIGGRAPH ’01 Conference Proceedings,
pp 347–354

77. Wei L-Y, Levoy M (2000) Fast texture
synthesis using tree-structured vector
quantization. In: Computer Graphics,
SIGGRAPH ’00 Conference Proceedings,
pp 479–488

78. Wei L-Y, Levoy M (2001) Texture
synthesis over arbitrary manifold surfaces.
In: Computer Graphics, SIGGRAPH ’01
Conference Proceedings, pp 355–360

79. Yamauchi H, Haber J, Seidel H-P (2003)
Image restoration using multiresolution
texture synthesis and image inpainting. In:
Proceedings of Computer Graphics
International, Tokyo, Japan, pp 120–125

80. Ying L, Hertzmann A, Biermann H,
Zorin D (2001) Texture and shape synthesis
on surfaces. In: Eurographics rendering
workshop, London, United Kingdom, June
25–27, pp 301–312

81. Zayer R, Rössl C, Seidel H-P (2004)
Variations of angle based flattening. In:
Advances in multiresolution for geometric
modeling. Springer, Berlin Heidelberg New
York

82. Zelinka S, Garland M (2002) Towards
real-time texture synthesis with the jump
map. In: Proceedings of the 13th
Eurographics Workshop on Rendering, pp
101–107

83. Zhang J, Zhou K, Velho L, Guo B, Shum
H-Y (2003) Synthesis of
progressively-variant textures on arbitrary
surfaces. ACM Trans Graph 22(3):295–302

HITOSHI YAMAUCHI is a research associate
at the Max-Planck-Institut Informatik in Saar-
brücken, Germany. He received his PhD (1997)
in Information Science from Tohoku Univer-
sity, Japan. His research interests include par-
allel global illumination, human face modeling,
image reconstruction, parameterization, and seg-
mentation.

HENDRIK LENSCH is currently a visiting assis-
tant professor with Marc Levoy at Stanford Uni-
versity’s Computer Graphics Lab, USA, where
he leads the research group “General Appear-
ance Acquisition” of the Max Planck Center for
Visual Computing and Communication (Saar-
brücken/Stanford). He studied computer science
at the University of Erlangen and the Royal
Institute of Technology (KTH) in Stockholm, re-
ceiving his diploma in 1999. He worked as a
PhD student and research associate at Hans-Peter
Seidel’s computer graphics group at the Max-

Planck-Institut für Informatik in Saarbrücken,
Germany. In 2003, he received his doctorate
from Saarland University. His research interests
include 3D appearance acquisition, BRDF recon-
struction, and image-based rendering.

JÖRG HABER is a senior researcher at the Max-
Planck-Institut Informatik in Saarbrücken, Ger-
many. He received his Master’s (1994) and PhD
(1999) degrees in Mathematics from the Tech-
nische Universität München, Germany. During
the last eight years he did research in various
fields of computer graphics and image process-
ing, including global illumination and real-time
rendering techniques, physics-based simulation,
scattered data approximation, and lossy image
compression. For the last couple of years, his
major research interests concentrate on model-
ing, animation, and rendering of human faces.

HANS-PETER SEIDEL is the scientific director
and chair of the computer graphics group at the
Max-Planck-Institut (MPI) Informatik and a pro-
fessor of computer science at the University of
Saarbruecken, Germany. The Saarbruecken com-
puter graphics group was established in 1999
and currently consists of about 40 researchers.
He has published some 200 technical papers in
the field and has lectured widely on these topics.
He has received grants from a wide range of or-
ganizations, including the German National Sci-
ence Foundation (DFG), the European Commu-
nity (EU), NATO, and the German-Israel Foun-
dation (GIF).
In 2003 Seidel was awarded the ‘Leibniz Preis’,
the most prestigious German research award,
from the German Research Foundation (DFG).
Seidel is the first computer graphics researcher
to receive this award. In 2004 he was selected
as founding chair of the Eurographics Awards
Programme.

