New Measurements Reveal Weaknesses of Image Quality Metrics
in Evaluating Graphics Artifacts
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Figure 1: State-of-the-art image quality metrics often fail in the prediction of the human-perceived distortions in complex images. Here, we
show the predicted detection probabilities (color-coded) for gradient-based tone mapping artifacts [Fattal et al. 2002] in a synthetic image.

Abstract

Reliable detection of global illumination and rendering artifacts in
the form of localized distortion maps is important for many graphics
applications. Although many quality metrics have been developed
for this task, they are often tuned for compression/transmission
artifacts and have not been evaluated in the context of synthetic
CG-images. In this work, we run two experiments where observers
use a brush-painting interface to directly mark image regions with
noticeable/objectionable distortions in the presence/absence of a
high-quality reference image, respectively. The collected data
shows a relatively high correlation between the with-reference
and no-reference observer markings. Also, our demanding per-
pixel image-quality datasets reveal weaknesses of both simple
(PSNR, MSE, sCIE-Lab) and advanced (SSIM, MS-SSIM, HDR-
VDP-2) quality metrics. The most problematic are excessive
sensitivity to brightness and contrast changes, the calibration for
near visibility-threshold distortions, lack of discrimination between
plausible/implausible illumination, and poor spatial localization of
distortions for multi-scale metrics. We believe that our datasets
have further potential in improving existing quality metrics, but also
in analyzing the saliency of rendering distortions, and investigating
visual equivalence given our with- and no-reference data.

CR Categories: 1.3.0 [Computer Graphics]: General;

Keywords: Image quality metrics (IQM), perceptual experiments,
global illumination, noticeable and objectionable distortions

Links: ©DL T PDF B WEB ™ DATA

*e-mail: mcadik@mpi-inf.mpg.de, the complete dataset is available at:
http://www.mpii.de/resources/hdr/igm-evaluation/

1 Introduction

Rendering techniques, in particular global illumination, are prone
to image artifacts, which might arise due to specific scene config-
urations, imbalanced scene complexity that might lead to a locally
varying convergence-rate of the solution, and numerous simplifica-
tions in the rendering algorithms themselves. With the proliferation
of 3D rendering services, where the user may often arbitrarily inter-
act with the content, the role of automatic rendering-quality control
gains in importance. Even in well-established industries such as
gaming a massive approach to automatic quality testing is desir-
able. In practice, objective image quality metrics (IQM) that are
successful in lossy image compression and transmission applica-
tions [Wang and Bovik 2006] are predominantly used in graphics,
including advanced attempts of their adaptation to actively steer
rendering [Rushmeier et al. 1995; Bolin and Meyer 1998; Rama-
subramanian et al. 1999]. Such objective IQM are trained to predict
a single value of mean opinion score (MOS) for image blockiness,
noise, blur, or ringing distortions. However, their performance for
other distortion types as well as their spatial localization within an
image has not been systematically validated so far.

The goal of this work is to generate a new rendering-oriented
dataset with localized distortion maps and use it for the evaluation
of existing IQM. For this purpose we prepare a set of images with
distortions that are typical for popular global illumination and ren-
dering techniques as well as the corresponding distortion-free ref-
erence images. Table 1 presents a summary of our stimuli. In two
separate experiments (Sec. 3) we ask the observers to locally mark
noticeable and objectionable distortions where the reference image
is either shown or hidden, respectively. We demonstrate that the ob-
servers can reliably perform both tasks, yielding high coefficients of
agreement (Sec. 4.1). In general, our results show a high correla-
tion between the observer marking for the with-reference and no-
reference datasets, but we also indicate the most common sources
of discrepancies in such marking (Sec. 4.2).

We use the with-reference dataset to evaluate the performance of
state-of-the-art full-reference (FR) IQM in detecting and localizing
rendering distortions (Sec. 5). We show that even advanced IQM
fail for some common computer graphics artifacts (e.g., Fig. 1).
Our data shows that in general no IQM performs better than any
other, even including the simple absolute difference (AD), which
is equivalent to the peak signal-to-noise ratio (PSNR) or mean-
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square-error (MSE) given our non-parametric metric performance
measures. Moreover, our analysis reveals some interesting weak-
nesses of FR IQM, including the lack of robustness to brightness
and contrast change, the inability to distinguish between plausible
and implausible illumination patterns, and poor localization of dis-
tortions due to multi-scale processing.

2 Related work

In this section we briefly characterize general purpose full reference
(FR) IQM which are central for our comparison against the subjec-
tive data. Also, we review major other developments in the eval-
uation of IQM performance. For more in depth discussion of the
image quality problem we refer the reader to the recent textbooks
[Wang and Bovik 2006; Wu and Rao 2005], and survey papers [Lin
and Kuo 2011; Pedersen and Hardeberg 2011].

2.1 Image quality metrics (IQM)

Full reference IQM can be categorized into different groups based
on the principles behind their construction [Wang and Bovik 2006;
Pedersen and Hardeberg 2011].

Mathematically-based metrics directly measure the difference of
pixel intensity. The root mean square error (RMSE) and peak
signal-to-noise-ratio (PSNR) are the most prominent examples of
metrics belonging to this category.

HVS-based metrics model early human vision characteristics such
as luminance adaptation, contrast sensitivity, visual masking, and
visual channels. The most prominent examples of such metrics in-
clude the Visible Differences Predictor (VDP) [Daly 1993] and
Visual Discrimination Model (VDM) [Lubin 1995]. VDP has also
been used in the evaluation of rendered image quality [Rushmeier
et al. 1995]. Recently, extensions of VDP have been proposed to
handle high dynamic range (HDR) images [Mantiuk et al. 2005;
Mantiuk et al. 2011].

Structure-based metrics detect structural changes in the image by
means of a spatially localized measure of correlation in pixel val-
ues. The Structural Similarity Index Metric (SSIM) is based on this
principle. In addition, it is sensitive to the differences in the mean
intensity and contrast [Wang and Bovik 2006, Ch. 3.2].

Other metrics combine the strengths of different metric categories.
For example, in sCIE-Lab [Zhang and Wandell 1998] spatial color
sensitivity is added to a standard color-difference measure in the
perceptually-uniform CIE-Lab color-space. In the Visual Signal-to-
Noise Ratio (VSNR) metric [Chandler and Hemami 2007] at first
an HVS-model is applied to eliminate distortions below the vis-
ibility threshold and then a simple mathematically-based metric is
used. Other modern metrics, such as the Visual Information Fidelity
(VIF) index [Wang and Bovik 2006, Ch. 3.3], rely on natural-scene
statistics and employ an information-theoretic approach to measure
the amount of information that is shared between two images.

2.2 Evaluation of image quality metrics

The comparison of IQM performance against data collected in
experiments with human subjects is required to evaluate metric
prediction accuracy and robustness for different types of visual
distortions. Standardized procedures for subjective image- and
video-quality evaluation have been developed by the International
Telecommunication Union [ITU-T-P.910 2008; ITU-R-BT.500-11
2002]. They rely on subjectively collected mean opinion score
(MOS) data, which is compared against a single number derived
from the error pooling over pixels. While such a procedure works

well for estimating the overall magnitude of distortions, informa-
tion on different distortion types, their possible interactions and
spatial distribution is not captured. In computer graphics applica-
tions the prediction of local distortion detectability by a human ob-
server is essential, and in this work we favor image distortion maps,
which capture such spatial information.

Mean opinion score (MOS) data. A number of databases of im-
ages with different distortion types and MOS subjective quality
scores is publicly available where LIVE [Sheikh et al. 2006] and
Tampere Image Database [Ponomarenko et al. 2009] are the most
prominent examples featuring both significant variety of distortions
and large number of stimuli, which have been judged by many
subjects (30-200). Lin and Kuo [2011] present a more complete
summary of such databases with detailed characterization of sup-
ported distortion types, which arise mostly in image compression
and transmission. Distortions covered by those databases that are
more relevant for graphics applications include blur, mean intensity
shifts, contrast changes, and various types of noise.

Image distortion maps. The spatial aspect of distortion detectabil-
ity has been addressed in calibration and performance evaluation
for HDR image [Mantiuk et al. 2005] and video [Cadik et al. 2011]
quality metrics. Thereby, the screen is divided into discrete blocks
of about 30 x30 pixels and the subjects mark blocks with noticeable
distortions. Similar to our work, Zhang and Wandell [1998] used
a brush-painting interface for freely marking reproduction artifacts
due to half-toning or JPEG compression given the reference im-
age. The marked errors produced by 24 subjects have been pooled
for each distorted image and as a result image distortion maps with
the probability of error detection have been obtained. In our ex-
periments we enable pixel-precise distortion marking, which we
then average in downsampled images that are used in our analy-
sis. This improves the quality of the data compared to the heuristic-
driven pixel rejection used in [Zhang and Wandell 1998]. Unlike
that study, we focus exclusively on rendering-related artifacts, and
we consider both the with- and no-reference experiment scenarios.

In this work we extend our dataset [Herzog et al. 2012], which con-
sists of 10 stimuli exhibiting mostly supra-threshold distortions for
3 selected distortion types, with 27 new stimuli (refer to Table 1 and
the supplementary material for a more detailed summary of both
datasets). The new stimuli exhibit sub-threshold, near-threshold,
and supra-threshold distortions, which are often present in a single
image. In comparison to that previous work, the new dataset re-
duces the subject learning effect by mixing different types of distor-
tions within a single image, restricting their appearance to randomly
selected parts of an image and increasing the number of distortion
types to 12. This also let us test the metrics in more challenging sce-
narios, where the distortions are non-uniformly distributed across
an image. Moreover, while the previous dataset contained mostly
well visible distortions, the new images contain also low amplitude
distortions, which are near the visibility threshold. The new dataset
reinforces the quality and robustness of the subjective data, which
is achieved by stabilizing the distance to the screen using a chin-rest
and involving a large number of observers (35).

3 Localized image distortion experiment

The goal of the study is to mark areas in the images that contain no-
ticeable distortions and those that contain objectionable distortions.
The former will let us test how well the IQM predict visibility, while
the latter can tell how robust the metrics are to image modifications
that are not perceived as distortions. In addition, the analysis of
the experimental data alone, for both visible and detectable thresh-
olds, can reveal which image differences are seen as disturbing and
which are most likely ignored or interpreted as a part of the original



Scene Distortion Type Mask | Method (Ref.) Tonem. | Settings Artifact (Ref.)

#1 Apartment VPL Clamp. no | IGI (LC) [Rein.] | 0.1-108 vpls 2108 vpls)

#2 CG Figures Struc-Noise no | IGI (PT) [Drag.] ]06 vpls (97K spp)

#3 Disney Struc-Noise no | IGI (PT) [Drag.] ]06 vpls (43K spp)

#4 Kitchen Struc-Noise no | IGI (PT) [Drag.] ]06 vpls (380K spp)

#5 Red Kitchen Struc-Noise no | IGI (PT) [Drag.] 100 vpls (200K spp)

#6 Sponza Above T. | Alias. (Shadow) no | GL (GL) [Rein.] | Shadowmap-pef 10242 (40962)
#7 Sponza Arches Alias. (Shadow) no | GL (GL) [Rein.] | Shadowmap-pef 10242 (40962)
#8 Sponza Atrium Alias. (Shadow) no | GL (GL) [Rein.] | Shadowmap ]0242 (40962)

#9 Sponza Tree Shad.| Alias. (Shadow) no | GL (GL) [Rein.] | Shadowmap ]0242 (40962)
#10 Sponza Trees VPL Clamp. no | IGI (LC) [Rein.] | 60- ]03 vpls (2- ]0‘J vpls)

#11 Apartment 1T Struc-Noise yes | RC,RC (PPM) [Rein.] | RC+PM phot.: 0.5- 106 3 109)
#12 Atrium Struc-Noise yes | PPM (PPM) [Rein.] | 5-10% (20-10°) photons

#13 Bathroom Noise yes | PPM,PPM (PPM) | [Rein.] | custom renderer

#14 Buddha Tonemap (Halo/Bright.)| yes | [Fat.’02] (v=3.0) | — PBRT / pfstools

#15 Chairs High/Med-freq Noise yes | MCRT (MCRT) ~=2.2 | backward RT [ITBT/Inspirer]
#16 City-d Alias. (Downsampl.) yes | NN (-) ~=2.2 | PBRT/Matlab

#17 City-u Upsampl. (Lanczos) yes | NN,Lanczos () | v=2.2 | PBRT / Matlab

#18 Cornell Alias./Struc-Noise yes | RC (RC) ~=1.8 | PBRT I spp (128 spp)

#19 Dragons Noise no | RC (RC) ~=2.2 | PBRT 16 spp (128 spp)

#20 Hall Brightness no | MCRT (MCRT) =22 | backward RT [ITBT/Inspirer]
#21 Icido Struc-Noise yes | RC (PPM) [Rein.] | RC+LC vpls: 0.5- 106 A3 109)
#22 Kitchen IT Struc-Noise/Bright. yes | RC (PPM) [Drag.] | RC+PM phot.: 0.5 10‘J A3 109)
#23 Livingroom Noise yes | PPM,PPM (PPM) | [Rein.] | custom renderer

#24 MPII Tonemap. (Grad.) yes | [Man’06] (v=4.5)| — PBRT / pfstools

#25 Plants-d Alias. (Downsampl.) yes | NN () =22 | PBRT/Matlab

#26 Plants-u Upsampl. (Lanczos) yes | NN,Lanczos (-) ~=2.2 | PBRT/Matlab

#27 Room Teapot | Struc-Noise yes | RC (RC) ~=22 | PBRT

#28 Sala Struc-Noise no | RC (PPM) [Drag.] | RC+PM phot.: 0.5-10° (5-10°)|
#29 Sanmiguel Aliasing/Bright yes | RC,RC (RC) ~=2.2 | PBRT 1 spp (16 spp)

#30 Sanmiguel cam3 | Light leaking yes | PM (RC) ~=22 | PBRT

#31 Sanmiguel cam4 | Alias./Struc-N./Bright. | yes | RC,RC (RC) ~=22 | PBRT I spp (16 spp)

#32 Sibenik VPL Clamp. no | RC (PPM) [Rein.] | RC+LC vpls: 0.5- 100 2- 109)
#33 Sponza Light leaking no | PM (RC) ~=1.8 | PBRT

#34 TT Alias./Noise/Struc-N. yes | RC.RC (RC) ~=2.2 | PBRT 1 spp (16 spp)

#35 Villa cam1 Noise/Struc-Noise yes | RC.RC (PM) [Man.] | PBRT

#36 Villa cam?2 Alias./Struc-N./Bright. yes | RC (PM) [Man.] | PBRT

#37 Villa cam3 Struc-Noise yes | RC (PM) [Man.] | PBRT

Table 1: Our dataset, from left to right: the scene identifier, distortion
type(s), if manually blended by a mask, the rendering method (reference al-
gorithm and settings in parenthesis), tone mapping, and the relevant render-
ing parameters (if known) used to generate our image dataset (e.g., Fig. 2).
The tone mapping operators Fat., Rein., Drag., Man., Man.’06 correspond
to [Fattal et al. 2002], global version of [Reinhard et al. 2002], [Drago et al.
2003], [Mantiuk et al. 2008], [Mantiuk et al. 2006], respectively. GL stands
for an OpenGL based deferred-renderer using shadow maps with percent-
age closer filtering (PCF). IGI is an instant global illumination renderer,
which supports glossy virtual point lights (VPLs). RC stands for irradiance
or radiance caching either in combination with photon-maps (RC+PM)
[KFivdnek et al. 2005] or lightcuts (RC+LC) [Herzog et al. 2009]. The ref-
erence solutions are computed either by pathtracing (PT) or bidirectional
pathtracing (Bi-PT) with a constant number of samples per pixel (spp), the
lightcuts algorithm (LC) [Walter et al. 2005] with 1% error threshold, or
progressive photon mapping (PPM) [Hachisuka et al. 2008]. Some images
were blended with artifacts of two different strengths or types, which is in-
dicated by the comma-separated method.

scene. In the following section we describe the design, procedure,
and results of the perceptual experiment that we conducted to gather
subjective labeling of artifacts in rendered images.

3.1 Stimuli

Table 1 summarizes the rendering algorithms and the distortions
that were introduced to the images. Stimuli #1 —#10 come from our
previous EG’12 dataset [Herzog et al. 2012], while in this work
we performed a similar but more extensive experiment (stimuli #11
—#37) in a more rigorous setup. The key differences between the
datasets are outlined in the Section 1, and they are further discussed
in the supplementary material.

All scenes were rendered into high-dynamic-range images and tone
mapped for display as indicated in Table 1. Each scene was ren-
dered using a high- and low-quality setting. In some cases a few dis-
tortions of different character were introduced by varying different
rendering parameters. Finally, the high quality image was in some
cases manually blended (column Mask in Table 1) with the cor-
responding low quality image to reveal the distortions in random-

ized regions. This additional level of randomness was necessary,
as many distortions appeared consistently either in low-illuminated
parts of the scene or near the edges. Without blending, the ob-
servers were likely to learn the typical locations for a particular
artifact and mark them regardless whether the artifact was notice-
able/objectionable or not. Some test scenes were blended with more
than one distorted image to contain distortions of very different
character (in those cases more than one Method appears in Table 1).
This was meant to test whether a metric can handle a mixture of
heterogeneous distortions and account for their impact on image
quality.

We now briefly summarize the distortions we have encountered in
various rendering algorithms, which are also listed in Table 1. We
restrict ourselves to typical global illumination (GI) related artifacts
and do not cover banding, tessellation, shadow bias or other more
specific artifacts that mostly arise in real-time rendering. For
more details about the nature of the individual rendering-specific
artifacts we refer the interested reader to our supplementary
material. Furthermore, for the later analysis and readability we
manually clustered the numerous distortion types into one of six
distortion categories which share a similar subjective appearance.

High-frequency noise is probably the most common error encoun-
tered in photo-realistically rendered images, which arises as a by-
product of all random sample-based integration techniques (e.g.,
path-tracing, progressive photon mapping [Hachisuka et al. 2008]).
Structured noise represents the class of distortions with correlated
pixel errors, which exhibit both noise and bias. These are for ex-
ample interpolation and caching artifacts commonly encountered in
approximate GI algorithms such as photon mapping [Jensen 2001],
instant radiosity [Keller 1997] as well as the popular (ir-)radiance
caching algorithm [Ward et al. 1988; Kfivanek et al. 2005].

VPL clamping and light leaking: approximate GI algorithms sys-
tematically introduce local errors, often even intentionally, in order
to hide the more visually disturbing artifacts (noise). VPL clamping
in instant radiosity and light leaking in photon mapping and irradi-
ance caching fall into this category.

Brightness: another distortion we have noticed is a consistent
change in brightness in large regions of an image. Reasons for this
can be of systematic nature (e.g., wrong normalization, incorrect
material usage) or approximative nature (e.g., only one-bounce in-
direct light, no caustics, only diffuse VPLs are computed).
Aliasing is the result of insufficient super-sampling or missing pre-
filtering during rendering. Our examples comprise aliasing in syn-
thetic images including shadow maps, which we partially generated
by downsampling the reference image followed by upsampling to
the original resolution using the nearest neighbors approach.

Tone mapping can introduce disturbing artifacts, in particular if
local gradient-based tone mapping operators (TMO) are applied.
Therefore, we included examples of two gradient TMOs into our
test set: typical halo artifacts appear in the buddha (#14) scene (re-
fer to Fig. 1) [Fattal et al. 2002], and characteristic gradient “leak-
ing” is demonstrated in the mpii (#24) scene [Mantiuk et al. 2006].

3.2 Participants and apparatus

A total of 35 observers (11 females and 24 males; age 19 to 52
years) took part in our experiments, and 21 of them completed the
no-reference followed by with-reference sessions. The first group
of 17 observers consisted of computer graphics students and re-
searchers (denoted as Experts in the further analysis), while 18 ob-
servers were naive to the field of computer graphics (denoted as
Non-experts). All observers had normal or corrected-to-normal vi-
sion, and they were naive as to the purpose of the experiment.



The evaluated images were displayed on two characterized and
calibrated displays: 1) LCD Barco Coronis MDCC 3120 DL dis-
play (10-bit, 21-inch, 2048 x 1536 pixels), and 2) NEC MultiSync
PA241W display (10-bit, 24-inch, 1920 x 1200 pixels). The cal-
ibration was performed using the X-Rite i1 Display Pro colorime-
ter (to D65, 120 cd/m?, colorimetric characterization by means of
measured ICC profiles). The experimentation room was neutrally
painted, darkened (measured light level: 2 lux), and the observers
sat: 1) 71 cm from the Barco display, and 2) 92 cm from the NEC
display, which corresponds to 60 pixels per visual degree. The ob-
serving distance was enforced by using a chin-rest.
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Figure 2: Example reference and distorted images from our test
set along with the mean observer data and maps of Kendall’s u for
both experiments. (Please refer to supplementary material for all
the images.)

3.3 Experimental procedure

We performed two experiments: in the first (no-reference) experi-
ment, the observers saw only a distorted image exhibiting render-
ing artifacts, while in the second (with-reference) experiment the
distorted image was presented next to the high-quality reference-
image. In each experiment the sequence of images was randomized.
We asked the observers to freely mark the image regions where they
could see artifacts using a custom brush-paint interface. The brush
size could be reduced up to per-pixel resolution by the user.

Each observer was introduced to the problem before the experiment
as follows. In the no-reference experiment, the observers were in-
structed to label all the areas in the image with objectionable distor-
tions. In the with-reference experiment, the observers were asked
to mark those regions in the distorted image, where they could no-
tice any differences with respect to the reference image. Each ex-
periment took on average 30 minutes per observer. Note that the
subjective distortion maps for images #1 — #10 were taken from
our previous dataset [Herzog et al. 2012].

4 Analysis of subjective data

In this section we show that the data indicates high agreement be-
tween observers, giving evidence that the experimental method is
reliable. Then, we analyze differences between the with-reference
and no-reference experiments.

4.1 Inter-observer agreement

The experimental task of marking distortions seems challenging,
especially in the no-reference setup, so the variations between ob-
servers are expected to be high. If the task is deemed to be impos-
sible, we can expect to see little agreement in the distortion maps
produced by individual observers. To test the inter-observer agree-
ment, we compute Kendall’s coefficient of agreement (u) per pixel
[Salkind 2007]. The coefficient u ranges from v = —1/(o — 1),
which indicates no agreement between o observers, to v = 1 indi-
cating that all observers responded the same. An example of such
a map of coefficients for the sanmiguel_cam3 (#30) scene is shown
in Fig. 2. The complete set of per-scene coefficients can be found
in the supplementary materials.

To get an overall indicator of agreement, an average coefficient u, is
computed for each scene. Such overall coefficient is skewed toward
very high values because most pixels did not contain any distortion
and were consistently left unmarked by all observers. Therefore, we
also compute a more conservative measure Uy, qsk, Which is equal
to the average u of only those pixels that were marked as distorted
by at least 5% of the observers.

The values of & and U,,qsk averaged across the scenes were 0.78
and 0.41 for the with-reference experiment, and 0.77 and 0.49 for
the no-reference experiment. These values are relatively high as
compared to the values typically reported in such experiments. For
example, Ledda et al. [2005] reported u between 0.05 and 0.43 for
the task of pairwise comparison of tone mapping operators. This
let us believe that the observers can reliably perform the distortion
marking task even without much experience or knowledge of the
underlying distortions.

4.2 With-reference and no-reference experiments

The main motivation for two experimental designs was to study the
relationship between noticeable (the with-reference experiment)
and objectionable distortions (the no-reference experiment). Fig. 3
shows the correlation of the probabilities of marking distortions for
both experiment designs. The Spearman correlation values are very
high: 0.88 for EG’12 and 0.85 for the new dataset, though these
values can be biased by a larger size of unmarked regions. Such
strong correlation is a further evidence that the task is well defined
and, even in the no-reference experiment, the observers perform
consistently and detect most distortions they would detect in the
with-reference experiment. The regression line for our dataset in
Fig. 3 indicates that fewer observers are marking the same distor-
tions in the no-reference experiment.

To get further insight, we analyze differences in individual images.
To find the regions that were marked systematically different be-
tween both with- and no-reference experiments, we perform the
non-parametric Kruskal-Wallis test between the results of both ex-
periments [Salkind 2007]. The test is run separately for each pixel,
resulting in the map of p-values as visualized in Fig. 4. Note that
although p < 0.05 should indicate that two pixels were marked
statistically significantly different in the two experiments, this is
only the case if each pixel is considered as an independent mea-
surement. Given the high spatial consistency of the markings, per-
pixels measurements are unlikely to be independent. However, such
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Figure 3: The relation between the probability of marking a re-
gion in the with- and no-reference experiments, plotted separately
for each dataset. Similar plots for individual scenes can be found
in the supplementary materials. The dashed line shows a linear
least-squares regression. The color map was generated from the
logarithm of the joint probabilities. The results of with- and no-
reference experiments are strongly correlated with fewer observers
marking the same regions in the no-reference experiment.

p-measure is a good indicator of relevant differences in the lack of
a suitable statistical test for our dense pixel-based measurements.

The comparison of with- and no-reference results in Fig. 4 shows
that the observers sometimes marked regions in the no-reference
experiment which were left unmarked in the with-reference experi-
ment. The buddha (#14) scene for example exhibits aliasing on the
pedestal of the statue (marked in red in Fig. 4 (left)), which was
not marked in the with-reference experiment because it was also
present in the reference image. However, there were only few such
cases in the entire dataset, which were all due to the imperfections
of the reference image. In the majority of the cases the observers
missed more differences when not seeing the reference image. For
example, the brightness change in the background of the buddha
statue caused by tone mapping (shown as green in Fig. 4 (left)) was
seldom marked in the no-reference experiment.

The number of differences between both experiments indicates that
both tasks are different. But at the same time, the high correlation

no-reference mean

Kruskal-Wallis p-values with-reference mean

Figure 4: Differences between with- and no-reference results for
the buddha scene. The left image shows in green the pixels that
were missed in the no-reference experiments (false negatives) and in
red those that were marked despite the lack of a difference between
the test and reference image (false positives). Only those areas are
marked for which the p-values from the Kruskal-Wallis test is less
than 0.05. Observers missed in the no-reference experiment the
smooth gradient and brightness changes due to tone mapping, but
marked aliasing that was also present in the reference image.

values show that many artifacts are salient enough to be spotted in
both with- and no-reference conditions. Note that both experimen-
tal designs are still less conservative than a typical detection mea-
surement, which involves some form of temporal presentation of
co-located test and reference images, for example by sequentially
showing the test and reference images in the same screen location.
Please refer to the project webpage for such presentation of the dif-
ferences.

We performed a similar analysis to compare the differences be-
tween the expert and non-expert observers. However, we found
only a few isolated cases in all scenes where the experts spotted
more distortions, such as darkening of corners due to VPL clamp-
ing. More extensive discussions of these differences can be found
in the supplementary materials.

5 Evaluation of quality metrics

In this section we investigate the performance of existing IQM in
detecting distortions marked by the subjects in our experiments. At
first, we justify our metric selection and briefly characterize each
metric’s strength. Then, we present statistical tools that we used for
their performance analysis and discuss the outcome.

5.1 Image quality metric selection

Numerous IQM evaluations clearly show that it is impossible to
indicate a single metric that performs steadily well for all tested
stimuli [Lin and Kuo 2011; Larson and Chandler 2010]. The most
problematic cases include images with spatially varying artifacts of
different magnitude, as well as mixed distortion types and less com-
mon distortions [Lin and Kuo 2011]. Our dataset represents well
all such difficult cases. Our choice of metrics in this study is based
on the observation that metrics involving perceptual or statistical
modeling perform significantly better than PSNR [Wang and Bovik
2006; Lin and Kuo 2011]. Nevertheless, because of its popularity
for image quality evaluation in computer graphics, we also consider
a simple absolute difference (AD) metric that is directly related to
the commonly used RMSE and PSNR. We use absolute rather than
squared differences because our statistical analysis is robust to any
monotonic transformations, such as the quadratic power function.

Another popular choice in graphics is CIE-Lab, but here due to even
more favorable conformance with image distortion maps [Zhang
and Wandell 1998] we select its spatial extension sCIE-Lab. HVS-
based metrics are represented by HDR-VDP-2 [Mantiuk et al.
2011], which provides much improved predictions with respect to
its predecessors HDR-VDP [Mantiuk et al. 2005] and VDP [Daly
1993]. Also, we investigate the SSIM that is often reported as the
most reliable metric [Larson and Chandler 2010], as well as its
multi-scale version MS-SSIM [Wang et al. 2003], which accounts
for structural and contrast changes at different scales to compen-
sate for the variations of image resolution and viewing conditions.
MS-SSIM is reported as the best-performer in many IQM compari-
son studies [Sheikh et al. 2006; Ponomarenko et al. 2009]. Finally,
we include as a metric the Spearman rank-order correlation (sCor-
rel) computed over local 8 x 8-pixel blocks, which can be regarded
as a subset of the SSIM functionality, to better understand the im-
portance of eliminated contrast and lightness factors.

Our metric selection is also representative with respect to compu-
tational complexity. AD and sCIE-Lab are attractive due to their
mathematical simplicity. On the other hand, HDR-VDP-2 is the
most complex but has been shown to successfully predict near-
threshold distortions. The medium complexity SSIM has been
demonstrated to meaningfully estimate the magnitude of supra-
threshold distortions, while its sensitivity to near threshold distor-



tions seems to be more problematic due to the lack of explicit HVS
modeling. The sCIE-Lab prediction also conforms to the distor-
tion magnitude and its sensitivity to spatial color patterns is based
on the HVS-model. MS-SSIM seems to bridge the gap between
SSIM and HDR-VDP-2 by emphasizing on the structural differ-
ences while processing at multi-scale.

To account for the differences in viewing distance between our two
datasets, the parameters of the metrics that respect a viewing dis-
tance (HDR-VDP-2 and sCIELab) were adjusted accordingly, and
for the other metrics images were resampled to match the angular
resolution of 30 pixels-per-visual-degree.

5.2 Statistical measures of metric performance

It is important to recognize that, in contrast to other im-
age quality experiments, our measurements do not capture
the perceived magnitude of distortion. For that reason we
need to use different measures for the metric performance.
Most image quality assess-
ment experiments measure
a single scalar differential-/
mean-opinion-score  (DMOS/
MOS) per test image, shown as
the dashed red line in the plot
on the right. The non-parametric
correlation between a metric and
the MOS values is considered
as a measure of the metric’s
performance [Sheikh et al. 2006; Ponomarenko et al. 2009].
Unfortunately, there is no method to measure MOS efficiently for
each location in an image. Our experiments capture how likely
an average observer will notice local distortions, shown as the
continuous blue line. It is correlated with MOS in the limited range
where the psychometric function (blue line) does not saturate. If
this probability of detection is equal or close to either O or 1, we
have no information about the perceived magnitude of a distortion.
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However, our data is well suited to benchmark the metrics ability
to spot problematic regions in terms of binary classification: mark-
ing the pixels that contain noticeable or objectionable distortions.
The performance of such classification is usually analyzed using
the receiver-operator-characteristic (ROC) [Baldi et al. 2000]. ROC
captures the relation between the size of regions that contain dis-
tortions and were correctly marked by a IQM (true positives), and
the regions that do not contain distortions but were still marked
(false positives). ROC captures the relation of these two quanti-
ties for a varying classification threshold. The metric that produces
a larger area under the ROC curve (AUC) is assumed to perform
better. To simplify considerations it is convenient to assume that a
certain percentage of observers need to mark the distortion to con-
sider it noticeable. In Fig. 5 (top-left) we present the results for
regions marked by 50% or more observers, but the supplementary
materials also include the data for the >25% and >75% criteria.

However, AUC values alone may give a wrong impression of the ac-
tual metric performance because usually only a small portion of the
pixels in the images of our experiments showed distortions. Thus,
the reference classification data is strongly unbalanced. For that
reason, in addition to ROC, we also plot Matthews correlation co-
efficient [Baldi et al. 2000], which is robust to unbalanced classi-
fication data. The coefficient indicates correlation of classification
data in the range from -1 to 1, where +1 represents a perfect pre-
diction, 0 no better than random prediction, and -1 indicates total
disagreement between prediction and observation.

5.3 Metric performance comparison

The key question is whether any of the IQM performs significantly
better than the others in terms of detecting noticeable or objection-
able graphics artifacts. The overall metric performance for both
datasets and the two experimental designs is summarized in Fig. 5.
Such summary, however, requires careful interpretation before any
winning or loosing metric can be indicated.

Generalization of ranking. Although the ranking in Fig. 5 is a
good summary of metric performance for a particular dataset, care
must be taken when extrapolating any conclusions outside our mea-
sured data. To test robustness of our ranking to randomization of
images, we computed the distribution of AUC by bootstrapping the
set of images used for each experiment. The procedure involved
computing AUC values 500 times, each time for a random set of
images selected from the original set, so that the number of images
was the same as in the original dataset and some of them could ap-
pear more than once (randomization with repetition) [Howell 2007,
ch.18]. The computed 500 AUC values resulted in the distribution,
which allowed for statistical testing. After applying Bonferroni’s
adjustment to compensate for multiple comparisons [Howell 2007,
p-3771, we found no statistically significant differences between any
pair of the metrics in the EG’12 dataset, and only one significant
difference between the metrics on the extreme ranking positions in
the new no-reference dataset. This means that neither dataset pro-
vides conclusive evidence that any of the metrics is better than the
others in a general case, and we cannot generalize the presented
rankings to the entire population of images and distortions. The
main reason for this is that the individual metric performance dif-
fers significantly from image to image depending on the nature of
the underlying distortions. Therefore, no IQM is robust enough
to perform significantly better for the distortions contained in our
dataset.

It is important to note that our method of statistical testing differs
from the methods used in other IQM comparison studies, such as
[Sheikh et al. 2006] and [Ponomarenko et al. 2009]. The statis-
tical testing employed in these studies was meant to prevent false
hypothesis only due to the variance in subjective responses. The
results of those statistical tests show that the ranking of the metrics
is very likely to be the same for a different group of observers while
assuming that the same set of images and distortions is used. Our
testing is much more demanding as it requires the metric to perform
better for any set of images (taken from the original population) in
order to be considered better in the statistically sense.

Overall metric performance. Due to the unbalanced ratio of the
marked and unmarked regions, we refer to Matthews correlation
coefficient instead of the AUC values to assess the overall perfor-
mance of the metrics. The average values of the Matthews coeffi-
cient for all scenes as shown in Fig. 5 are low, ranging from 0.2 to
0.35 for the EG’12 dataset, and between 0.25 and 0.45 for the new
dataset. These values are much lower than Spearman’s rank order
correlation of 0.953 reported for the LIVE database [Sheikh et al.
2006] and 0.853 reported for the TID2008 database [Ponomarenko
et al. 2009] for the best metric (MS-SSIM). However, it must be
flagged that Spearman’s correlation, although also scaled from -1 to
1, is different to Matthews coefficient, as discussed in Section 5.2.
The low correlation values indicate that classifying distortions in
the distortion maps is a much more difficult task than correlating a
single value per image with the MOS. It also means that our dataset
is a more demanding and accurate test for IQM since it can point out
the areas where the metric’s performance could be improved. Fig. 6
summarizes the Matthews correlation coefficients between the met-
ric predictions and subjective responses in the with-reference ex-
periment. As can be seen the highest correlation is achieved for the
high-frequency-noise distortions, while for high-contrast structured
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Figure 5: The performance of quality metrics shown as ROC plots (top-left), Matthews correlation (bottom-left) and ranked according to the
area-under-curve (AUC) (right) (the higher the AUC, the better the classification into distorted and undistorted regions). The percentages
indicate how frequently the metric on the right results in higher AUC when the image set is randomized using a bootstrapping procedure.

noise with only localized appearance (e.g., in the kitchen (#4) and
red kitchen (#5) scenes) the correlation drops abruptly. Images with
mixed distortions seem to be problematic as well.

5.4 Analysis of image quality metric failures

The ranking plots in Fig. 5 reveal different performance of the met-
rics for both datasets. HDR-VDP-2 performed the best for the
EG’12 dataset, but was the second to the last in the new dataset.
Surprisingly, the simple non-parametric correlation metric sCorrel
performed the best for the new dataset, but at the same time it
was the worst metric for the EG’12 dataset. This unexpected re-
sult cannot be easily explained by looking at the aggregated results
and requires investigating individual images. In the following we
summarize our analysis of individual images and reveal the most
pronounced cases of metric failure.

Brightness and contrast change is a very common artifact of
many rendering algorithms, as discussed in Section 3.1, and also
the cause of failure of most advanced IQM. The best example of
that is the sala (#28) scene shown in Fig. 7. The brightness differs
significantly between the test and reference images for all surfaces,
but the observers marked only the floor and in a lesser extent the
walls, both affected by low-frequency noise. The noise was more

visible on the floor than on the walls because the floor lacked texture
and thus did not mask the noise. One metric that excelled in this
task was sCorrel, with Matthews correlation exceeding 0.6. This
is because non-parametric correlation is also invariant to non-linear
transformations of pixel values, including low-frequency brightness
changes. The second best performing metric, sCIELab, contains a
band-pass model of the CSF, which attenuates low-frequency varia-
tions and thus makes this metric more robust to brightness changes.
Although HDR-VDP-2 also includes a band-pass CSF model, it is
far too sensitive to contrast changes to disregard numerous supra-
threshold pixel modifications. Even MS-SSIM, which partially re-
lies on the measure of correlation, did not perform much better than
arandom guess for this image. This shows that invariance to bright-
ness and contrast changes must be an essential feature of any IQM
that needs to reflect the observers’ performance in the side-by-side
comparison or non-reference tasks.

Visibility of low-contrast differences. For several scenes the test
images have been computed using instant global illumination (IGI)
while the reference images have been generated by path tracing,
which often features certain amount of stochastic per-pixel noise.
One example of such an image pair is the disney (#3) scene shown
in Fig. 8. While the stochastic noise in a well-converged image is
usually invisible, and thus remains unmarked in subjective experi-
ments, it clearly affects the absolute pixel values and image struc-
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Figure 6: Matthews correlation coefficient for predictions of HDR-VDP-2, SSIM, MS-SSIM, sCIE-Lab, sCorrel, and Absolute Difference with
respect to subjective responses (with-reference experiment). Results are grouped according to the type of artifact as indicated at the bottom.
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Figure 7: Scene sala (top), distortion maps for selected metrics
(2™ and 3" rows), ROC and correlation plots (bottom). Most
metrics are sensitive to brightness changes, which often remain un-
noticed by observers. sCorrel is the only metric robust to these arti-
facts. Refer to the legend in Fig. 5 to check which lines correspond
to which metrics in the plots.

ture. Both AD and sCorrel metrics are sensitive to such differences,
so they report distortions regardless of their visibility. What makes
sCorrel insensitive to global brightness changes, makes it also in-
sensitive to the amplitude of the noise, which prevents this metric
from finding a reliable visibility threshold. For that reason both
metrics poorly correlate with subjective data, as seen in the plot
of Fig. 8. The metrics specifically tuned for near threshold sig-
nal detection, such as HDR-VDP-2, performed much better in this
task. This stresses the importance of proper visual system model-
ing, which improves the metric’s accuracy for the near-threshold
distortions.

Plausibility of shading. A similar kind of distortion can be seen
differently depending whether it leads to plausible or implausible
shading. For example, two scenes shown in Fig. 9 contain VPL
clamping and photon leaking distortions, respectively, near the cor-
ners. In the case of the sponza (#33) scene photon leaking results in
brightening of dark corners. This was marked as distortion by most
observers because bright patches are unlikely to be found in dark
corners. However, the VPL clamping in the sibenik (#32) scene

Reference

Subjects

LR CIEC)

HDREVDP2

WS=SSIM

Marked by more than 50% of observers
1 -

sorrel

09 08
08 s
£
g o7 3
2 0.6 S
g 051 %
o 0.4( £
e g
£ o3 2
0.2t

01|

-0.2
0 0.10.20.3040.50.60.70809 1
True positive rate

0
0 0.1020.30405060.70809 1
False positive rate

Figure 8: Scene disney: simple metrics, such as sCorrel and AD,
fail to distinguish between visible and invisible amount of noise re-
sulting in worse performance.

resulted in the opposite effect, the corners were darkened. Such
distortion was marked by much fewer observers because darken-
ing could have resulted from self-shadowing and in fact appeared
realistic in the given context. All metrics failed to distinguish be-
tween these two cases. This suggests that robust IQM may require
a higher-level analysis of scene and illumination that could distin-
guish between plausible and implausible patterns of illumination.
This is difficult to achieve if images are the only source of informa-
tion, but could be possible if information about the 3D scene and its
shading were available [Herzog et al. 2012].

Spatial accuracy of the prediction map. Many sophisticated met-
rics perform often worse than the AD because they are unable to
precisely localize distortions. This is well visible in the dragons
(#19) scene shown in Fig. 10. The distortion maps for MS-SSIM
show visible differences that widely disperse from the edges of the
dragon figures into the background regions that do not contain any
physical difference. This problem affects mostly multi-scale met-
rics, such as MS-SSIM and HDR-VDP, but SSIM is also affected
because of its 8 x 8 sliding window approach, which limits the effec-
tive accuracy of the distortion map. This observation suggests that
the metrics should employ techniques that respect object bound-
aries and thus can produce more accurate distortion maps.
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Figure 9: Photon leaking and VPL clamping artifacts in scenes
sponza and sibenik result in either brightening or darkening of
corners. However, darkening is subjectively acceptable, whereas
brightening leads to objectionable artifacts.

6 Conclusions and future work

In this work we propose rendering-oriented datasets for image qual-
ity evaluation, which provide detailed distortion maps along with
the probability of their detection by human observers. We show
that objectionable distortions marked by the observers that did not
see the reference image are strongly correlated in terms of their
spatial location with the distortions marked in the presence of the
reference image. This may suggest that by further improvement
of full-reference IQM, we can achieve quality predictions similar
to no-reference human judgments, which should be an easier task
than the development of a no-reference IQM that directly mimics
the human perception. Full-reference perceptual experiments, on
the other hand, may potentially be approximated by a no-reference
experiment if a reference image is not available.

For existing full-reference IQM our datasets turned out to be very
demanding, and our analysis of metric failures suggests directions
for improvement. The relatively good performance of the simplis-
tic non-parametric correlation measure (sCorrel) clearly indicates
its importance. Although SSIM and MS-SSIM also incorporate a
correlation factor their performance is strongly influenced by their
excessive sensitivity to brightness and contrast changes. Clearly,
near-threshold contrast accuracy is important to disregard all non-
noticeable distortions. At the same time proper spatial distortion
localization is required, which is the problem for all multi-scale ap-
proaches, in particular, in the proximity of high contrast distortions.
In general, the performance of state-of-the-art IQM in graphics ap-
plications is not very consistent, and one should not be too reliant
on them. In particular the IQM originating in the image/video com-
pression community may not be the most suitable for graphics ap-
plications where the artifacts are often very distinct.

We believe that all those insights are essential towards improving

VISES

Figure 10: Dragons scene contains artifacts on the dragon figures
but not in the black background. Multi-scale IQM, such as MS-
SSIM and HDR-VDP-2, mark much larger regions due to the dif-
ferences detected at lower spatial frequencies. Pixel-based AD can
better localize distortions in this case.

existing metrics or developing new ones, which we relegate as fu-
ture work. Upon the public release our datasets should be useful to
train such future metrics and compare their performance. However,
for a systematic and quantitative study of metric failures further ex-
periments are required.

Our datasets provide the probability of noticing distortions, which
could offer interesting insights on the saliency of artifacts in render-
ing. Such artifact saliency could be investigated in the context of
comparing a pair of images, searching for distortions within a sin-
gle image, as well as task-free image inspection. Similarly to the
concept of visual equivalence [Ramanarayanan et al. 2007], objec-
tionable distortions dictate less conservative requirements on image
quality, thus enabling further computational savings when used as
the measure of desirable quality.

Our published datasets could also be interesting for the broader vi-
sion science community, as the complex stimuli presented in our
experiments differ significantly from the usual “laboratory” ones
and enable inspection of higher-level vision tasks. However, more
experiments (based on photo-realistic images) are clearly needed
as well as a further study of cognitive factors in the quality assess-
ment, such as inattentional blindness or task fatigue. To this end,
a speculative question raised by our results is whether it is benefi-
cial and promising at all to model the early human vision processes
(bottom-up modeling) or whether we should concentrate on data-
driven approaches that are statistically trained on subjective results
(top-down modeling). The bottom-up approach may result in worse
than expected predictive power for complex images, while the top-
down approach is prone to over-training as image quality databases
will offer only very limited sample from the huge population of all
potential images and distortions. This study is a step towards com-
bining both approaches that enables training and testing the metrics
of any complexity on the per-pixel basis.
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