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Outline

= Full-reference Image Quality Metrics (IQM)

= Datasets, experiments — localized distortions
= Evaluation of state-of-the-art |Q metrics

= Analysis of IQM failures

= Conclusions and future work
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Full-Reference Image Quality Metrics

reference FR
IQM

localized
distortion map
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Full-Reference Metrics

= What are they good for?

Quality assessment scenarios in
compression/transmission, etc.

Algorithm analysis/validation/evaluation

Guiding/ parameter estimation of renderers
Stopping criterions
Speed/ quality enhancements

= Are they reliable?
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Mathematically Based Metrics

= AD

« (R)MSE

M = |ref — test]|

n

1
M = (ref — test)? MSE = EZ(refi — test;)?
i=1

2
= PSNR PSNR = 10 log;o =
* SCORREL M = SRCC(ref, test)
(Spearman's rank correlation coefficient,
per 8x8 block)
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Error Sensitivity-Based Approaches

= General framework

———— o ————

Reference _ | Pre- | ICSF L,
signal processing | : Filtering
Distorted |

R —» > —>
signal . :

= Visible Differences Predictor

Channel
Decomposition

!

Error
Normalization

-|and Masking |-

Error
Pooling

|, Quality/
Distortion
Measure

Daly93]

= Perceptual Distortion Measure [Teo, Heeger 94]

= Visual Discrimination Model [Lubin 95]
= Gabor pyramid model [Taylor et al. 97]
= WVDP [Bradley 99]

= HDR-VDP-2 [Mantiuk et al. 05, Mantiuk et al. 11]
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Structural Similarity-Based Approaches

Signal x

Signal y

= UQI [Wang 02]

= SSIM [Wang 04]

= M-SSIM [Wang et al. 04]
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= Multidimensional Quality Measure Using SVD
[Shnayderman 04]
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Other Metrics

= sCIE-Lab [Zhang and Wandell 98]

Spatial extension of CIE Delta E
Luminance and color contrast sensitivity

= VSNR [Chandler and Hemami 07]
Visual Signal to Noise Ratio
Wavelet-based SNR
Masking model

= VIF [Wang and Bovik 06, Ch. 3.3]

Information-theoretic approach (mutual information)
Exploits natural scene statistics
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Evaluation of STAR FR-IQM

= 6 1QMs: AD (PSNR, MSE), sCIE-Lab,
sCORREL, SSIM, MS-SSIM, HDRVDP-2

= How good are IQMs in localizing artifacts?

= Evaluation of distortion maps (not just mean-
opinion-scores, I.e. one number per image)

= Computer graphics-generated contents and
artifacts

= Two subjective tasks: given reference image and
with no reference image
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Evaluation of STAR FR-IQM (cont.)

= [nput data + Subjective responses = dataset

= Datasets
Simpler evaluations
Reproducible evaluations

Should comprise typical artifacts
Should be publicly available

http://www.mpi-inf. mpg.de/resources/hdr/igm-evaluation/
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Avalilable Datasets

= IMAGES
— Modelfest [Watson 99]

— LIVE image db [Sheikh et
al. 06]

— TID (Tampere Image
Database) [Ponomarenko
et al. 09]

= VIDEOS

— VQEG FRTV Phase 1
[VQEG ‘00]

— LIVE video db
[Seshadrinathan et al. 09]
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Avallable Datasets (cont.)

= Mostly only photos/real videos

= Focus on compression/transmission related
artifacts

= Subjective responses: only overall quality (MOS)

Mean Opinion Score (MOS)

MOS Quality Impairment
5 Excellent Imperceptible
4 Good Perceptible but not annoying
3 Fair Slightly annoying
2 Poor Annoying
1 Bad Very annoying
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Previous Work

= [Zhang et al., CIC97, SP98§]
— Image distortion maps

@riiginal
— JPEG compression, .
half-toning
— RMSE, CIELAB E94,
S-CIELAB
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Previous Work (cont.)

= [Mantiuk et al., SPIEQ5]

for calibration of HDRVDP1
distited ~ § HDRVDP . .0 || HDRVDP int.

B
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= [Cadik et al., SPIE11]
for validation of DRIVQM

subjects DRIV@V HDRV/DP DRIV.DP
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Previous Work (cont.)

= Malin purpose: to calibrate/validate existing
models

= No IQM evaluation
= No CG content

= Simple distortions
Pattern noise
Blur
Random noise
Compression artifacts
Transmission artifacts
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Previous Work (cont.)

= [Herzog et al., EG12]

— With-reference and no-reference experiments
— 10 Supra-threshold CG stimuli

with-rigference N with-referencel o with=refenrence with=refelience

no-reference A no:neference ! no-lefekence no-nefellkence
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Our Dataset: Example Rendering Artifacts

= e.g., low-freq. noise ? | N— ‘
from glossy instant
radiosity or photon
density estimation
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= Clamping Bias
(darkening in corners)
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Example Rendering Artifacts

= [rradiance caching
Interpolation errors
leaking




Example Rendering Artifacts

= Shadow Mapping

(easy to generate large
sample set)
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User Experiment - Mean Distortion Maps

= 37 test images \

= 35 subjects (expert and
non experts)

= Localization of artifacts
= Scribbling interface
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User Experiment — With Reference

= Noticeable distortions
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User Experiment — No Reference
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Example User Responses

= Probability of detection
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Inter-Observer Agreement

= Kendall's coefficient of agreement u

? reference

uwith_ref =0.78 uno_ref =0.77

SAWith-reference M No-reference

\ ; Yohtalrs u

= R
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With-reference vs. No-reference

= Results rather similar

wiithEhiefeliehce wiith=neference wiith-reference

neszlefekence nNE=EEEEhEE no:nefenrence
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With-reference vs. No-reference (cont.)

= Strong correlation
(perhaps people do not need the reference)

. SRCC=0.88 SRCC=0.85
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Results — Example of Metric Predictions

efielence

VISESSIIVI LI BDIREVIBDIR2 SClE-Lal SCOKIREIL

—

MS-SSIM - distortion map HDR-VDP-2 - distortion map sCIE-Lab - distortion map sCorrel - distortion map
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Results — Example of Metric Predictions

eliservers
2

N ESsiv| N THDR:VDP2| N TRNEGIE-Lab SCORFEN
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:
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Results — Example of Metric Predictions

reference
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MS-SSIM - distortion map
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AD - distortion map

HDR-VDP-2 - distortion map

HIBDRZVD P2
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SSIM - distorticn map

sCIE-Lab - distortion map

SCEIE-1"alb

=

sCorrel - distortion map
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Measures of Metric Performance

= Previous experiments A A e
MOS/DMOS {1,2,3,4,5}
= No easy way to capture MOS

locally
Probability of detection [0,1]

DMOS

Probability
of detection |

0 P_hysical amount of distortion —

= Receiver operating characteristic 100%
(ROC) O
Area under curve (AUC) PP A
Thresholds (25%, 50%, 75%)
0% P(FP) 100%
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Measures of Metric Performance (cont.)
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Measures of Metric Performance (cont.)

= Matthews correlation coefficient (MCC)

Robust to unbalanced data
[-1, +1]
= 1 — perfect prediction
= 0 — not better than random
= -1 — total disagreement

TPxTN—-FP x FN

MCC =
V(TP + FP)(TP + FN)(TN + FP)(TN + FN)
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Metric Performance Comparison — ROC
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= With-reference experiment results (see paper for no-ref.)
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Metric Performance Comparison — MCC
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= Rather poor performance AD
_ SSIM
= No champion MS-SSIM
. . HDR-VDP-2
= Simple metrics comparable to complex ones SCIE-Lab
— — — sCorrel
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Metric Performance Comparison (cont.)

= Bootstrapping
(randomization with
repetitions 500x)
Bonferroni correction

= No statistically significant
difference between IQMs

= Performance differs
significantly per scene
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Analysis of Metric Failures & /=
Brightness and contrast change . s
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Analysis of Metric Failures % =~ | =

Visibility of low-contrast differences =~ |

reference n () IS(SIAVEIFS

MS-SSINVIE ¥ SCORREIN
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Analysis of Metric Failures
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Analysis of Metric Failures = | =

Plausibility of shading (cont.) ol L T o
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Conclusions

= Rendering datasets for IQM evaluation with
subjective localized distortion maps

= With reference = no-reference experiments

= State-of-the-art IQMs far from subjective ground-
truths

= No universally reliable metric exists
= Large space for improvements
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FW: How to Improve Existing Metrics?

= Data-driven approaches (machine learning)
= Edge-stopping decompositions
= Utilize more information if possible (CG)

— Similarly to NoRM [Herzog et al. EG’12]

\\ = R
1 \( e -‘ T P . %‘?ﬁri
l h
depth buifer normals diffuse texture bufier
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Future Work (cont.)

= Datasets — more uses possible
Development and evaluation of future metrics
Visual saliency of rendering artifacts
Vision science (real, not “laboratory” stimuli)

= Effects of visual attention, inattentional
blindness, etc.
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