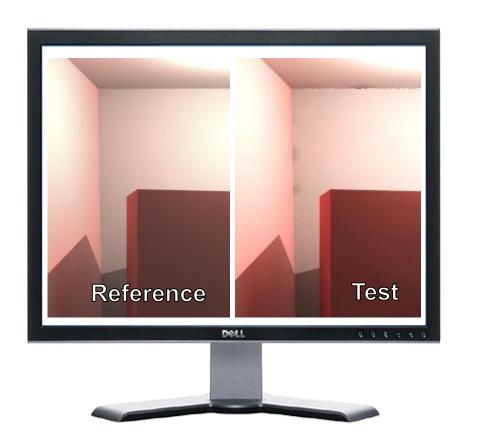
Learning to Predict Localized Distortions in Rendered Images

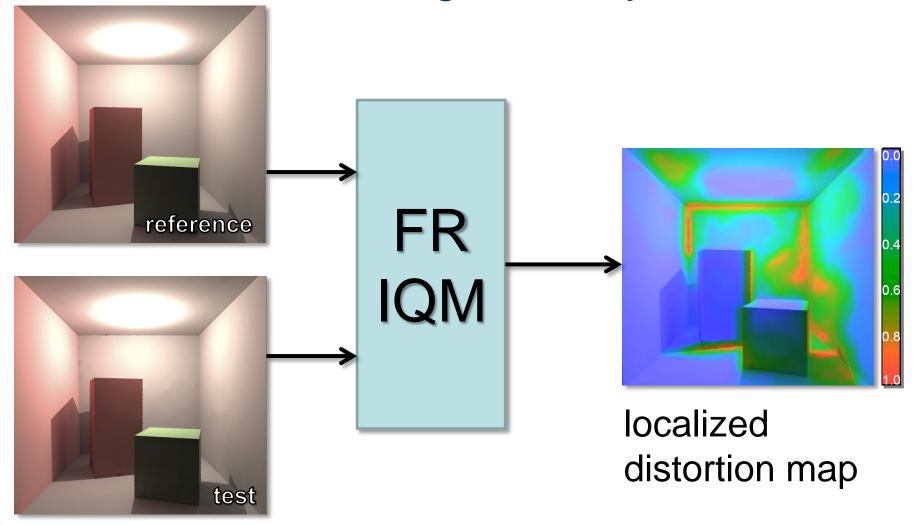
Martin Cadik, Robert Herzog, Rafal Mantiuk, Radoslaw Mantiuk, Karol Myszkowski, Hans-Peter Seidel



Outline

- Full-reference Image Quality Metrics (IQM)
- New feature descriptors for IQM
- Analysis of feature descriptors
- Visual saliency analysis (eye tracker data)
- New data-driven Image Quality Metric
- New synthetic dataset
- Optimization of parameters of existing metrics
- Conclusions and future work

FR Image Quality Assessment

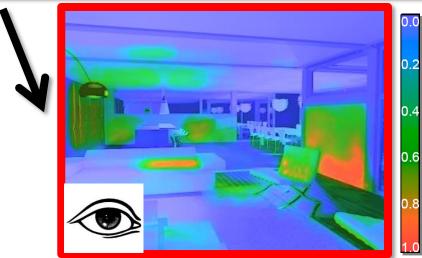


Rate the Quality/
Visibility of Artifacts

Subjective Experiments: + Reliable

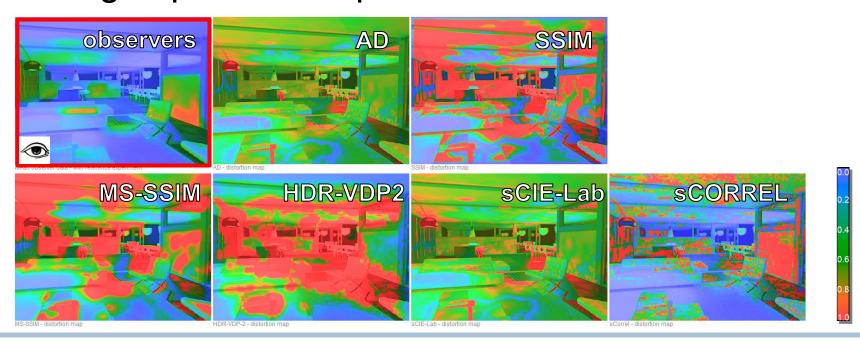
High Cost

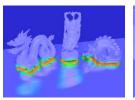
Full-Reference Image Quality Metrics

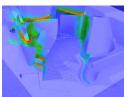

Full-Reference Metrics

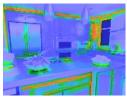
- What are they good for besides that?
 - Quality assessment scenarios in compression/transmission, etc.
 - Algorithm analysis/validation/evaluation
 - Guiding/ parameter estimation of renderers
 - Stopping criterions
 - Speed/ quality enhancements
- Are they reliable?

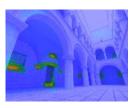
Evaluation of STAR FR-IQM

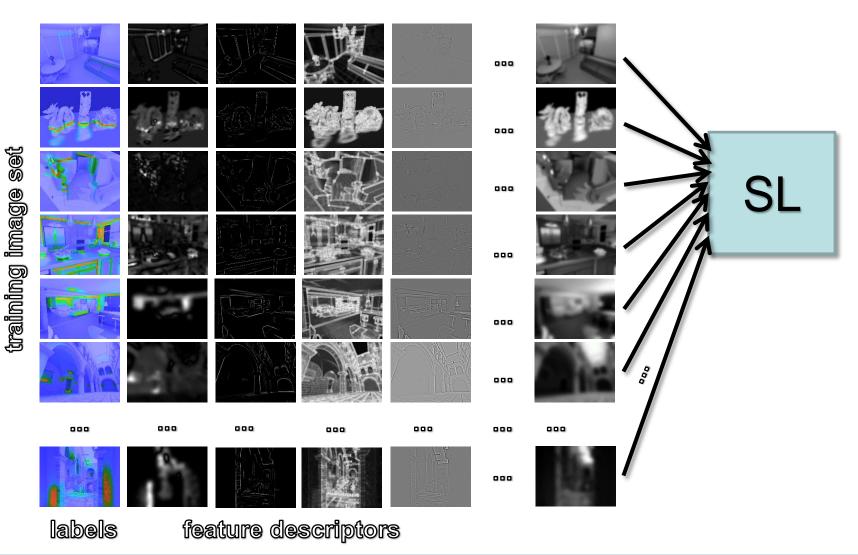


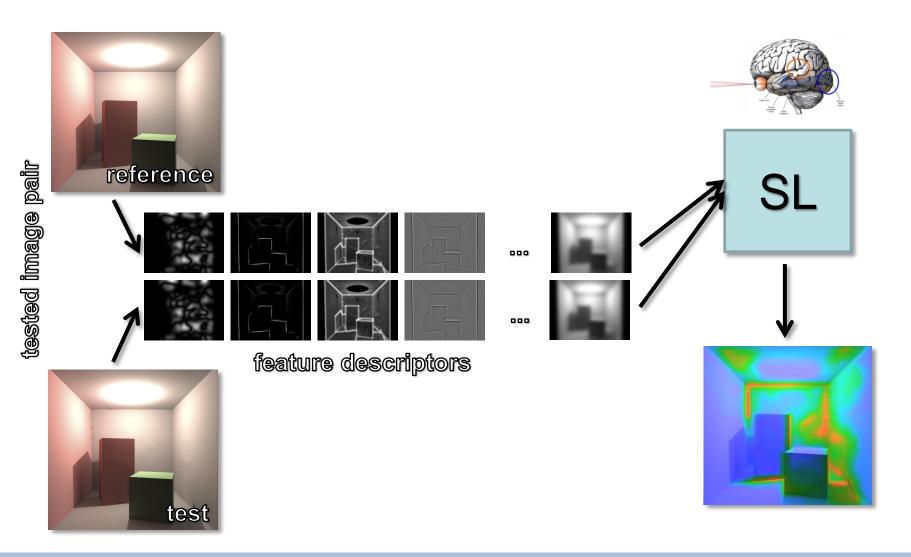

- [Čadík et al., SIGGRAPH Asia'12]
 - 37 images, 35 subjects
 - Localization of artifacts
 - 6 STAR IQMs
 - LOCCG dataset


Results of the Experiment


- State-of-the-art IQMs far from subjective ground-truths
- No universally reliable metric exists
- Large space for improvements...


How to Improve Metrics Performance?





- Supervised learning (e.g. SVM, decision forests)
 - Labels (distortion maps)
 - Feature descriptors

Supervised Learning – Training Phase

Supervised Learning – Prediction

New feature descriptors for IQM

- Computer vision
 - BOW (bag-of-visual-words), HOG (histogram of oriented gradients), dense SIFT, Harris corners, phase congruency
- Statistics
 - Spearman correlation, gradient distance, entropy, signed difference, luminance, mean, variance, kurtosis, skewness
- Parts of previous metrics
 - SSIM (SSIM_struct, SSIM_con, SSIM_lum, HDR-VDP-2, sCIE-Lab, absolute difference)
 - Multiscale versions (low-pass & band-pass)
- High-level visual features
 - Variations of SSIM features, masking entropy
 - Contrast term with masking, contrast with inhibition
 - Artifact plausibility
 - Patch frequency, Location prior, etc.

Analysis of Features for IQM

- In total 32 feature vectors, 233 dimensions
- 1) How important is a feature?
- 2) What features give the best IQM performance?
- Feature selection
 - Greedy feature selection
 - Stacked classifiers
 - Decision forests
 - ROC analysis

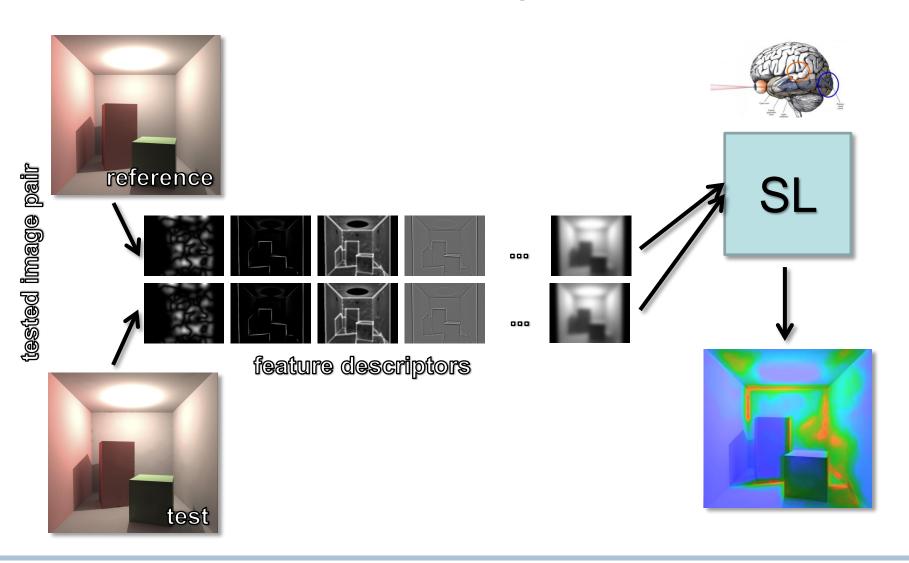
Analysis of Features for IQM

- Greedy feature selection (SVM)
 - Adds features with smallest crossvalidation error
 - Combination of complete features
- Stacked classifiers (SVM)
 - Non-linear classifiers (per feature) +
 one linear classifier → weights
- Decision forests
 - Feature selection at each tree node
- ROC analysis
 - Identifies strong features, does not count with correlations and combination of features

	Feature Name	Dim.	Multi	Import.	Import.	Import.	Import.
			scale	multi-dim.	multi-dim.	scalar	scalar
				(greedy)	(stacking)	(dec. trees)	(AUC)
1	ad [Sec.3.1]	11	✓				
2	bow [Sec.3.2]	32			1.0	1.0	
3	dense-sift diff [BZM07]	1		0.72047			0.86216
4	diff [Sec.3.3]	11	✓		0.48596	0.66906	
5	diff mask [Sec.3.3]	1		0.19609			0.85772
6	global stats [Sec.3.3]	5					
7	grad dist [Sec.3.3]	1					
8	grad dist 2 [Sec.3.3]	1			0.32785	0.66382	0.85919
9	Harris corners [HS88]	12	✓			0.76699	
10	hdrvdp band [MKRH11]	6	✓			0.68933	0.85035
11	hdrvdp band log	6	✓				
12	hog9 [DT05]	62			0.46443		
13	hog9 diff [Sec.3.2]	1			0.32178	0.67821	
14	hog4 diff [Sec.3.2]	1					
15	location prior [Sec.3.4]	2					
16	lum ref [Sec.3.3]	11	✓	0.58963			
17	lum test [Sec.3.3]	11	✓	0.21429			
18	mask entropy I [Sec.3.3]	1		0.40419	0.52820	0.99389	0.86358
19	mask entropy II [Sec.3.3]	5	✓	1.0		0.67035	0.86676
20	patch frequency [Sec.3.4]	1			0.41590		
21	phase congruency [Kov99]	10	✓	0.19712			
22	phow diff [BZM07]	1					
23	plausibility [Sec.3.4]	1			0.32051		
24	sCorrel [Sec.3.3]	1		0.18956			0.8496
25	spyr dist [Sec.3.3]	1				0.85793	
26	ssim con [WBSS04]	11	✓				0.8496
27	ssim con inhibit [Sec.3.1]	1			0.44840		0.84517
28	ssim con bal [Sec.3.1]	1					
29	ssim con bal max [Sec.3.1]	1					
30	ssim lum [WBSS04]	11	✓	0.58791			
31	ssim struc [WBSS04]	11	✓	0.18681	0.53080	0.65608	0.86484
32	vis attention [Sec.3.5]	1					
Metric performance (AUC)				0.880	0.897	0.916	0.892

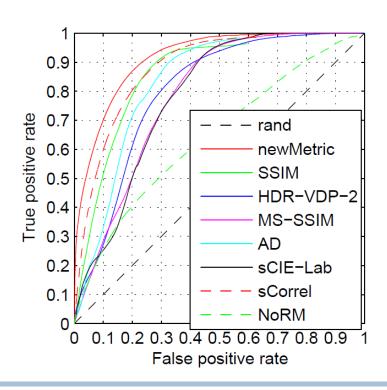
Visual Saliency Analysis

- Does knowledge of visual attention improve IQM?
- Acquired by eye-tracker (SMI P-CR RED250)
 - Observation: 12s per image
 - Averaged over 13 subjects
- Analyzed in the framework as normal feature
 - Measured saliency does not improve predictions
- Data publicly available for download for future research



measured saliency

New Data-driven Image Quality Metric

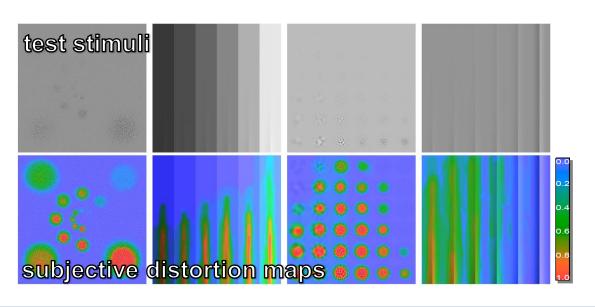


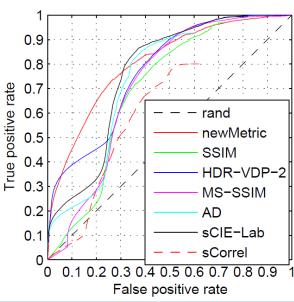
New Data-driven Image Quality Metric

- SL=ensembles of bagged decision trees
 - t=20 trees, avg. depth=10
- 10 best features ranked by feature selection
- LOCCG dataset for training
- Advantages
 - Computer graphics content
 - Many distortion types
 - Superposition of distortions

New Image Quality Metric – Performance

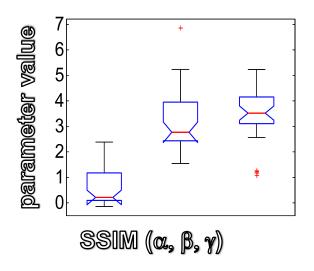
- Metric performance ROC analysis
 - LOCCG dataset leave one out cross validation
 - Compared to 7 state-of-the-art IQM

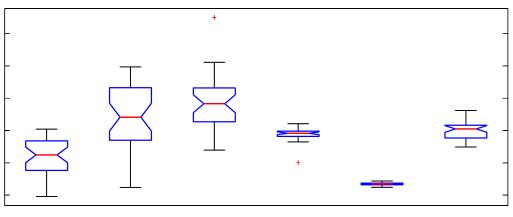



New Image Quality Metric – Results

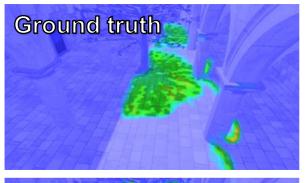
SSIM ground-truth new metric HDR-VDP-2 new metric ground-truth SSIM HDR-VDP-2

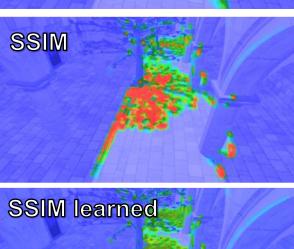
New Synthetic Dataset

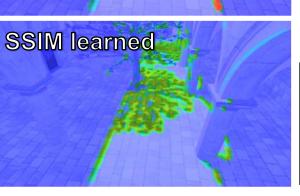

- Contrast-Luminance-Frequency-Masking (CLFM)
- 14 stimuli (image pairs), 13 subjects
- Learning "real-world" (LOCCG) → good results on synthetic data (CLFM) (not vice-versa)
- Available for download at project webpage

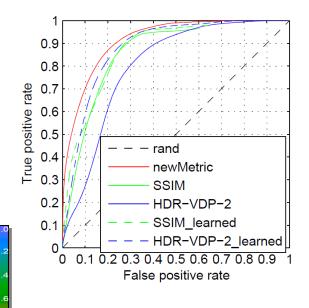


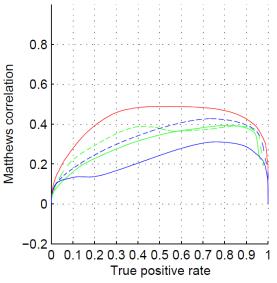
Optimizing Parameters of Existing IQMs


- IQM features → stack of classifiers → weights = optimized parameter values
- HDR-VDP-2 [Mantiuk et al., SIGGRAPH'11]
- SSIM [Wang and Bovik, '06]




HDR-VDP-2 (w1, w2, w3, w4, w5, w6)

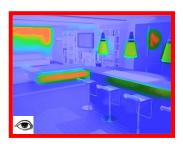

Optimizing Parameters of Existing IQMs

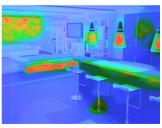


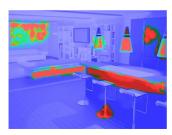
 Improved performance for rendering artifacts

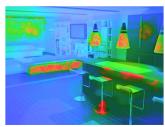
Conclusions

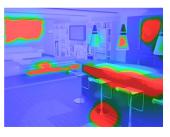
- Analysis of feature descriptors for IQM
- New features (human perception)
- Visual saliency analysis (eye tracker data)
- New data-driven Image Quality Metric
- New synthetic dataset
- Optimization of parameters of existing metrics


Future Work


- Saliency maps
- More training images
- Other supervised learning techniques
- No-reference metric [Herzog et al., EUROGRAPHICS'12]


Thank You For Your Attention


Martin Cadík, Robert Herzog, Rafal Mantiuk, Radoslaw Mantiuk, Karol Myszkowski, Hans-Peter Seidel


http://www.mpi-inf.mpg.de/resources/hdr/metric/mcadik@mpi-inf.mpg.de

