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Abstract

Synthetically generating images and video frames of complex 3D scenes using some photo-realistic rendering soft-
ware is often prone to artifacts and requires expert knowledge to tune the parameters. The manual work required
for detecting and preventing artifacts can be automated through objective quality evaluation of synthetic images.
Most practical objective quality assessment methods of natural images rely on a ground-truth reference, which
is often not available in rendering applications. While general purpose no-reference image quality assessment
is a difficult problem, we show in a subjective study that the performance of a dedicated no-reference metric as
presented in this paper can match the state-of-the-art metrics that do require a reference. This level of predictive
power is achieved exploiting information about the underlying synthetic scene (e.g., 3D surfaces, textures) instead
of merely considering color, and training our learning framework with typical rendering artifacts. We show that
our method successfully detects various non-trivial types of artifacts such as noise and clamping bias due to insuf-
ficient virtual point light sources, and shadow map discretization artifacts. We also briefly discuss an inpainting
method for automatic correction of detected artifacts.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Image Quality Assessment

1. Introduction

While photo-realistic rendering methods are getting more
advanced over time, various rendering artifacts still appear
as a problem in the results. These artifacts can be reduced or
completely avoided by fine-tuning the rendering algorithm’s
parameters through trial and error. But this manual process
is often time-consuming and requires some level of under-
standing about the inner machinery of the rendering method
in consideration. Analogous to the field of objective image
quality assessment where one can use computational qual-
ity metrics that predict the subjective quality evaluation, the
objective quality assessment of synthetic images is highly
beneficial because it eliminates the tedious manual labor re-
quired otherwise. Additionally, such a metric enables auto-
matic detection and elimination of rendered images of unac-
ceptable quality. To that end we propose an objective image
quality metric for realistic image synthesis based on a ma-
chine learning system trained with various types of render-
ing artifacts.

Building a quality metric for synthetic images has addi-
tional challenges over a metric for natural images. The met-
rics for natural images are often full-reference, namely they
rely on a non-distorted copy of the image for evaluating the
distorted (test) image. Unlike in applications like compres-
sion and watermarking, in rendering such a reference image
is often not available in practice and a metric for synthetic
images should detect and predict the strength of rendering
artifacts based solely on the test image. Although humans of-
ten detect distortions just as well without a reference, in con-
trast non-reference image quality metrics are usually inferior
in performance to full-reference metrics [WR05]. Thus, the
absence of a reference image is a significant constraint in
metric design.

The central idea of this paper is to leverage 3D scene in-
formation to compensate for the lack of a reference image
while detecting rendering artifacts. Any scene specific per
pixel data data beyond color, such as depth, texture and ma-
terial, is difficult, if at all possible, to obtain reliably in natu-
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ral images. This is not the case for rendered scenes, and we
show that taking full advantage of this additional informa-
tion enables non-reference quality assessment of synthetic
images with a prediction performance comparable to full-
reference metrics.

• a fully automatic metric that detects rendering artifacts
without a reference,

• a learning framework for common rendering artifacts that
also guides our artifact removal,

• a human visual system-inspired model that predicts the
perceived strength of rendering artifacts,

• a dataset of photo-realistic rendering artifacts including
subjective artifact probability detection maps.

In a subjective study, we show that the performance of our
metric matches the state-of-the-art in full-reference metrics.
Our metric could be employed in rendering farms, as well as
in controlling the rendering quality in client-server or cloud
computing settings. One could also use it as a diagnostic tool
for rendering quality, or in an optimization framework to find
optimal parameters for a rendering method.

2. Related Work

In this section we review previous work on non-reference
(NR) image/video quality assessment. First, we discuss the
NR metrics for imaging applications, and then, we present
rendering-specific solutions. For a detailed discussion of
the full-reference (FR) and reduced reference (RR) qual-
ity metrics we refer the reader to the recent textbooks
[Win05, WB06, WR05]. FR metrics tailored for computer
graphics and HDR imaging applications are summarized in
[RWD∗10, Ch. 10] and [MKRH11].

NR metrics in imaging applications The key difficulty in
developing NR metrics is the absence of a non-distorted ref-
erence image or some features representing it. Common ap-
proaches to compensate for this are (1) modeling distortion-
specific characteristics, (2) using natural scene statistics, and
(3) employing learning based classification methods.

Distortion-specific NR methods capitalize on the knowl-
edge of artifact type and its unique characteristics [WR05,
Ch. 3]. Examples include metrics for detecting blockiness
due to lossy JPEG and MPEG compression and ringing at
strong contrast edges [WB06], blurriness due to high fre-
quency coefficients suppression [CCB11, LH11], banding
(false contouring) at low gradient regions due to the ex-
cessive quantization [DF04]. There are some attempts of
building more general NR quality metrics, which evaluate a
combined contribution of individually estimated image fea-
tures such as sharpness, contrast, noise, clipping, ringing,
and blocking artifacts [WR05, Ch. 10]. The contribution of
all features including their simple interactions is summed up
with weights derived through fitting to subjective data.

Natural scene statistics [Sim05] derived from artifact-free

images can be helpful in detecting artifacts. Sheikh et al.
show that noise, blurriness, and quantization can be iden-
tified as deviations from these statistics [SBC05].

Image features extracted from distorted and non-distorted
images are used for training machine learning techniques
such as support vector machines (SVM) or neural networks.
Moorthy and Bovik [MB10] use generalized Gaussian dis-
tribution (GGD) to parametrize wavelet subband coefficients
and create 18-D feature vector (3 scales × 3 orientations ×
2 GGD parameters), which is used to train an SVM clas-
sifier based on perceptually calibrated distortion examples
from the LIVE IQA database. The classifier discriminates
between five types of mostly compression-related distortions
and estimates their magnitude. Saad et al. [SBC10] train a
statistical model to detect distortions in DCT-based contrast
and structure features.

Discussion: Our technique differs from previous work in
three ways: (1) we use depth buffer and albedo information
in addition to color, (2) our output is a distortion map rather
than a scalar value, and thus, we show spatial distribution of
distortions, and (3) our work specializes in rendering arti-
facts rather than compression/transmission related artifacts.

Rendering-specific NR metrics Some metrics in this cat-
egory rely on predicted reference images. In image-based
rendering the mis-registration error of pixels with respect to
the ground truth reference image is a good measure of visual
quality [KSGH09]. In 3DTV applications the lack of ground
truth can be compensated by reprojecting (warping) images
from different cameras to the mid-point view [KSGH09].
Also, when temporal frame replication is performed for re-
ducing the rendering cost or display hold-type blur, simi-
lar reprojection in temporal domain is feasible [MRT99]. In
contrast to these, our method is purely NR in that we do not
need to predict a reference. This is also the case for the recent
work of Berger et al. [BLL∗10] where specialized ghosting
detector explicitly works on an interpolated image.

Other work in computer graphics literature includes a
model of the elevation of contrast discrimination thresh-
old due to visual masking, which can be predicted based
on the texture pattern only [RPG99, WPG02]. An estima-
tor of bias, which mostly leads to blurred shading details,
has been proposed within the progressive photon mapping
framework [HJJ10]. This estimator relies strongly on in-
trinsic renderer information such as derivatives of estimated
lighting function, which becomes feasible only for density
estimation methods with smooth kernel functions. Our data-
driven approach aims for using less rendering specific and
easier to acquire data. Stokes et al. [SFWG04] introduced
a perceptual NR metric, which predicts the contribution of
the indirect illumination components towards perceived im-
age quality. While the metric cannot detect local artifacts,
similar to our metric it considers per pixel reflectance infor-
mation.

Ramanarayanan et al. [RFWB07] proposed metrics that
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Figure 1: Example images with artifacts used for our no-
reference quality metric. Insets show magnified artifacts re-
gions, letters indicate the type of artifact (C: VPL clampling,
G: glossy VPL noise, S: shadow map aliasing). The num-
bered images correspond to the testset used in the user study.

utilize per object reflectance and surface bumpiness in-
formation for training SVM classifier on subjective data.
Their method measures the overall visual equivalence in-
stead of identifying problematic image regions. Křivánek et
al. [KFB10] investigated visual equivalence for instant ra-
diosity (virtual point light) algorithms and proposed a num-
ber of useful rendering heuristics, which were difficult to for-
malize into a ready to use computational model.

3. Overview

In this work, we are interested in automatically detecting
rendering artifacts, which are typical for global illumina-
tion solutions (Fig. 1), and that we briefly describe in Sec-
tion 4. We achieve this via a machine learning approach (see
Section 5) based on the discrimination of rendering-specific
features (Section 5.2) trained on our generated database of
synthetic image pairs (Section 5.1). The whole system is de-
picted in Fig. 2. Note that we do not intend to classify an
image as a whole but rather predict the locations of artifacts
in an image. Optionally, we can “clean” the image making
effective use of inpainting techniques (Section 7) based on
the same set of training image pairs and obtain a “pseudo-
reference” image, which is then used to perceptually nor-
malize the distortion map for the visibility of artifacts (Sec-
tion 8). We present our results in Section 9 and demonstrate
in a user study (Section 10) that our method is competitive
with state-of-the-art reference methods (VDPs). Finally, we
conclude with future prospects in Section 11.

4. Rendering-specific Artifacts

Photo-realistic rendering is still very time-consuming and
rendering a high-resolution, globally-illuminated image may
take several minutes to hours becoming even more critical
in the case of an animation. Therefore, many rendering al-
gorithms trade quality (bias) for speed and often leave it to

the user to find the right parameters, eventually resulting in
algorithm-specific artifacts, which are hard to control, i.e.,
the generated image might look fine partially but exhibits
strong degradations in small areas.

In our experiments we focused on artifacts inherent to
popular rendering algorithms, which comprise Instant Ra-
diosity [Kel97] with glossy virtual point lights (VPLs),
Lightcuts [WFA∗05], and OpenGL rasterization using PCF
shadow maps [RSC87], which produce VPL-based artifacts
(i.e., low-frequency noise), clamping bias (darkened cor-
ners), and shadow map aliasing (jaggy shadow boundaries),
respectively. Examples of images showing these artifacts are
given in Fig. 1. We exclude stochastic noise (pixel-variance),
e.g., anti-aliasing, path-tracing, from our study, which is
much easier to handle and well-studied in the rendering com-
munity [BM98, RPG99, TJ97, KA91]. We also do not dis-
cuss temporal artifacts, which are beyond the scope of this
work [YPG01].

5. Learning Rendering Errors from Examples

Computing the perceived image errors along with the final
pixel colors during the rendering process can be very helpful
for example to adapt the rendering. However, this is only fea-
sible for easily analyzable errors in very specific algorithms,
which often boils down to storing and evaluating lower order
statistics (e.g., variance in path-tracing). In general, estimat-
ing the visual error without a reference is a difficult and ill-
posed problem, which may easily become more demanding
than the rendering process itself. Another issue is that we
may not always have access to the renderer’s source code
or that we simply have not enough understanding of the un-
derlying problem and in particular how to quantify the vis-
ible error. This could be because the rendering problem is
hard to analyze or there are many hidden factors that have a
large impact on the final, perceived rendering quality, like for
example the shape of the geometry, local or global lighting
distribution, scene material, rendering parameters, or even
visual masking effects. All these thoughts have led to our
data-driven non-reference quality metric (NoRM).

5.1. Image Data Collection

The problem of understanding and classifying rendering arti-
facts in general is too complex to be tackled analytically and
we have chosen a data-driven approach that relies on ma-
chine learning. Since the space of artifacts even for one spe-
cific type is high-dimensional, we need many images with
“right” and “wrong” examples to train a classifier initially.
In general, while generating “clean” reference images may
be time-consuming, producing various kind of artifacts in
the rendered images is often trivial. Hence, we generated
a database of rendered images with positive and negative
example-images for each type of artifact (see some exam-
ples in Fig. 1). In contrast to image datasets used in computer
vision tasks, our database comprises:
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Figure 2: Overview of the whole NoRM pipeline. Labels are semi-automatically extracted by differencing and thresholding
the image with its reference and then masking this residual with a coarse user mask. For training the classifier, these labels
are uniformly sampled with equal number of positive/negative samples at which we compute our multi-scale 3D features.
The resulting high-dimensional descriptors are fed to the classifier (SVM). After optimizing parameters and feature dimension
reduction via cross-validation, the classifier can predict artifacts in a new image. For artifact-prone pixels we inpaint reference
patches from the same training image pairs to generate a pseudo-reference that is finally used in our perceptual normalization.

• color image with reference,
• depth buffer,
• diffuse material buffer (textures),

which we refer to as a frame (see Fig. 3 for an example).

The reason why we restrict ourselves to this data – al-
though we could in principle extract more – is that this data
is relatively easy to dump and requires only little modifica-
tion, if at all, of the rendering software. Specifically, these
buffers are commonly stored in a deferred renderer. † Given
a frame we generate other useful data, which we need for
computing feature descriptors: screen-space normals from
linearized depth, and approximate lighting (irradiance) us-
ing the color and material buffer.

In order to focus on artifacts which are above the threshold
of visibility (and also on one specific type of artifacts) dur-
ing the learning stage, initially, a coarse mask is manually
painted over the tone mapped image. In the masked regions
we compute the error between the pixels in the reference and
the artifact-image via differencing. This way the user only
needs to provide a rough mask in which we label those pix-
els for which the error really exists, see Fig. 2. Finally, we
avoid that a few pixels are not assigned artifact labels (e.g.,
due to zero-crossings in the error signal) although neighbor-
ing pixels would indicate so. Therefore, we perform an ad-
ditional dilation plus erosion (morphological closing) on the
labels with a disc of pixel radius 2.

5.2. Features for Classification

Finding good descriptors or a combination of descriptors
that discriminate the feature space well is crucial for any

† The depth buffer is always present in a rasterizer and the mate-
rial buffer could be obtained by rendering the scene shot with only
ambient lighting or using a simple “eye-light shader”.

machine learning approach. We experimented with various
standard techniques to classify and discriminate artifacts
from the remaining “correct” pixels. Those feature descrip-
tors comprised local histograms of color and depth, HoG
(histogram of oriented gradients), multi-scale Hessian, and
frequency domain descriptors based on discrete cosine trans-
form (DCT). We applied these descriptors to compute fea-
tures for our depth, color and material buffer pixels. It turned
out that none of those techniques was discriminative enough
to give satisfying results and we had to dig more into the ren-
dering process itself exploiting scene and rendering-specific
knowledge, which we will describe further.

DepthDepth Texture Artifacts Reference

Figure 3: Example of the data used as input for training.

5.2.1. Texture Removal

Instead of computing features in the material buffer and in-
creasing the dimension of the feature space, we partially re-
move the correlation of pixel color and texture to obtain the
approximate lighting (compare the left image in Fig. 4 with
Fig. 3). We only restrict ourselves to diffuse textures since
these usually convey the most information about material
structure in a synthetic scene. For diffuse surfaces in a scene
this provides us with information about irradiance instead of
pixel radiance, which is locally low-dimensional. Since the
color buffer is given as HDR image, we simply divide the
color pixels by the corresponding linearized material pixels.
Care has to be taken with material values clamped to zero
where the original lighting information in one or more color
channels is essentially lost. For such rare cases we diffuse
the lighting in the clamped color channels from spatially

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.
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 Lighting Pyramid  Discontinuity Segmentation

Figure 4: Computing statistics of lighting in a local, con-
tiguous neighborhood (red patch) at different scales.

neighboring pixels, that are not affected by clamping. En-
tirely black material pixels are considered as light sources or
specular surfaces and the corresponding color pixels are not
altered. These heuristics worked well for our image database
but are certainly not always satisfactory when dealing with
complex glossy materials possibly consisting of several lay-
ered textures. For such a scenario the user can still provide
the lighting image instead of relying on an ill-posed decon-
volution of BRDF and lighting.

5.2.2. Screen-space ambient occlusion

Screen-space ambient occlusion (SSAO) has been developed
for the GPU to efficiently compute an approximate scalar
ambient-occlusion term sao(x) solely based on the depth
buffer. Essentially, ambient-occlusion computes the solid-
angle covered by the non-occluded environment (far field)
in the visible hemisphere of directions. Although SSAO is a
crude approximation in screen-space, it can deliver good re-
sults for pixels where the surrounding occluders are all vis-
ible in the depth buffer. Ambient occlusion is highly corre-
lated with the harmonic mean distance to the surrounding
surfaces, which is often taken as an upper bound for the ir-
radiance gradient of the indirect lighting [WRC88]. Since
many lighting artifacts are due to large indirect gradients,
the complement, 1− sao(x), is also a good indicator for po-
tential artifacts.

5.2.3. Rectified Tiles – Descriptors in Texture-space

In contrast to computer vision approaches, the presence of
exact depth per pixel allows us to “unfold” a local image re-
gion from the surface captured by the depth buffer and trans-
form it to its canonical view. This way, we are able to pre-
serve depth discontinuities and perspective when computing
local feature descriptors (e.g., histograms) and essentially re-
duce the dimensionality of the classification problem since
we can operate in 2D texture space‡. For computing the lo-
cal texture parametrization of the decals we use discrete ex-
ponential maps [SGW06] computed over the depth buffer,
which is based on Dijkstra’s graph-distance algorithm. An

‡ For 30.000 randomly extracted 16× 16 pixel blocks from the
glossy VPL images we run PCA on rectified, non-rectified blocks
and captured 99.5% of the variance in 12 (10 for shadow map alias-
ing), 16 basis vectors out of 256, respectively.

example of the computed decal parametrization is shown in
Fig. 5. The so computed texture parametrization gives us the
mapping from 2D texture space to projected 2D image space
but we need the inverse mapping. Instead of directly “un-
wrapping” the surface colors via a splatting approach, we
first compute the inverse texture mapping (the displacement
field) via splatting and then use this (smooth) vector field
for gathering the surface colors [Sze10]. Since splatting may
lead to holes for overly stretched pixels, we fill the “defor-
mation vector field” using a push-pull approach [GGSC96].
This two-stage approach better preserves high-frequencies
in the colors and introduces only a small amount of blur due
to (bilinear) resampling when gathering the color via the in-
verse texture mapping. To this end, we use the computed
parametrization for computing histograms of oriented gradi-
ents (HoG) directly in texture space but also for the inpaint-
ing described in Section 7.

5.2.4. Joint-Bilateral Filtering

To detect high-frequency artifacts in the image we perform
frequency analysis. To eliminate the influence of edges and
discontinuities in the depth buffer we blur the image with
a joint-bilateral filter with weights steered by the depth and
surface normal differences of the pixels under the filter foot-
print. The Gaussian variance of the depth and normal filter is
automatically estimated from the 80-th and 91-th percentile
of the depth and normal angle histogram, respectively. Next,
we compute the residual as the filtered lighting subtracted
from the original lighting image. For each feature sample we
perform a local discrete cosine transform (8×8 DCT) in the
residual image within a weighted Gaussian window (Gabor
filter) at 2 different scales in a pyramid.

5.2.5. Local Statistics

Artifact image regions have different color distributions than
the reference counterpart and we compute the first four cen-
tral moments (mean, variance, skewness, kurtosis) in a local
window of 16×16 pixels in 3 different scales. Similar to the
joint-bilateral filtering, we only compute the statistics in a
window over pixels that correspond to a contiguous surface
in the depth buffer. In order to do so, we segment the depth
buffer in piecewise continuous image segments via k-means
clustering of pixels with respect to depth and surface normal
(see Fig. 4).

6. Classification and Feature Optimization

We have proposed and tested several standard as well as spe-
cialized features described above. However, many of those
features are not useful for our task or might be redundant.
Certainly, using too many features, it is likely that the model
overfits the training data and that we cannot provide enough
examples to train the classifier efficiently. Hence, we have to
select a subset from our feature pool such that the combined
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feature is the most discriminative with respect to our artifact
type.

Before the optimization, we linearly rescale the extracted
feature vectors such that the 5th percentile of all data points
maps to 0 and the 95th percentile to 1. This way, we esti-
mate the feature bounds only from the “inlier” training data,
i.e., we only account for samples within a standard deviation
σ≈ 1.5 if we assume data samples are Gaussian distributed.
Then, similar to [LSAR10], we use a greedy approach to se-
lect the “best” feature subset. The idea is to select the feature,
one at a time, that minimizes the cross-validation error mea-
sure (BER see below) computed over the training set and add
this feature to the current best feature set, which is initially
empty. This procedure is continued till the cross-validation
error of the classifier is increased when adding more fea-
tures (i.e., increasing the feature dimension). The resulting
features after this optimization starting with the entire fea-
ture pool are listed in Tab. 1. We use 10-fold cross-validation
over the feature descriptors (computed from subimages) and
split the randomly permuted training features into 90% train-
ing and 10% validation data and perform 5 iterations (i.e.,
evaluate the feature performance on half of the data set).

For the classifier we use a support vector machine (SVM)
with a radial basis function (RBF) kernel. The two main pa-
rameters of the SVM, the regularization parameter C, and the
RBF kernel width γ, are automatically computed by again
minimizing the cross-validation error in a hierarchical man-
ner (coarse-to-fine grid search). The best parameters for each
type of artifact can be found in Table 1.

When testing the classifier on new (unseen) images,
which may contain much fewer artifacts than non-artifact
pixels, the classification may result in high recogni-
tion rates (>90%) even when every pixel is classified
as “non-artifact”. To get a more sensible error mea-
sure, we chose the balanced error rate (BER): BER =
1
2

(
|{i | l(i)∈Ω+∧p(i)6=l(i)}|

|Ω+| + |{i | l(i)∈Ω−∧p(i)6=l(i)}|
|Ω−|

)
, where

l(i) is the correct label, p(i) is the predicted label of sam-
ple i and Ω+, Ω− is the set of positive, and negative labeled
samples.

Classification (artifacts) Input (with artifacts) Blended Output 
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Normals
Depth

Compute 
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d0,
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..
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Add 
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Figure 5: Outline of the proposed inpainting algorithm
(without the material decorrelation) illustrated for one patch
including texture parametrization computed as described in
Section 5.2.3.

7. Artifact Correction via Inpainting

Certainly, detecting artifacts is appealing, but we would also
like to remove the artifacts to obtain a higher quality, accept-
able image, which we can utilize as a “pseudo-reference”,
see Section 8. In cases where the artifacts are minor and
cover only a small fraction of the image, this is possible. We
already described how to compute the likelihood of pixels
to be prone to artifacts of certain types using SVM classi-
fication. An obvious approach to artifact elimination is to
perform regression and learn the error function of the arti-
fact training images. However, our tests using support vec-
tor regression were unsatisfactory, perhaps because the error
function is often too noisy. Hence, we chose an approach
based on context-sensitive inpainting.

First of all, during the correction phase we only touch
those pixels that are classified as artifacts with a certain min-
imum strength. The main idea is to inpaint tiny images seam-
lessly into the detected artifact regions that match the local
configuration of this region. Again, we exploit the additional
information in the depth and material buffers to facilitate the
inpainting process. First, we only inpaint rectified images
that live in texture space, which we glue onto the contiguous
surface as described in Section 5.2.3. Second, we remove
the textures from the image before the inpainting process
(see Section 5.2.1). Nevertheless, the inpainting procedure
must still be able to preserve high-frequency edges (e.g.,
caustics, shadows) and must also hide the transition at the
inpainting boundary. The later is achieved via linear blend-
ing of the splatting result with the original image, where the
blending weights are computed from the binary artifact la-
bels (red pixels in Fig. 5), which we blur with a Gaussian
(σ = 3) after dilating them by a quarter of the patch size
(i.e., 4 pixels). We also experimented with Poisson image
blending [PGB03] but it produced sometimes unrealistically
looking color bleedings.

Now, we need to find artifact-free image blocks to be
painted into the local artifact region. Our inpainting operates
in LDR YCbCr color space and we only inpaint tone mapped
luminance (Y) while chroma (CbCr) is copied from a fil-
tered version of the artifact image. We use a joint-bilateral
filter as described in Section 5.2.4. For each artifact pixel a
local image block (16× 16 pixel) is extracted and rectified,
which is then used to construct an index to query a database
for the k-nearest neighbors (k-nn). This database is initially
generated from our training image pairs and contains tens
of thousands of rectified reference lighting patches together
with the artifact descriptor index. As a descriptor we use the
downsampled luminance (8×8) of the rectified artifact patch
multiplied with a Gaussian envelope to penalize off-center
pixels. In order to detect also large scale patterns, we use a
multi-scale search and extract image blocks from the first l
levels (l = 2) of a Gaussian pyramid. Therefore, the k re-
trieved reference patches are first upsampled (bicubic) to the
corresponding scale of the search descriptor, then cropped
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to our patch resolution, and blended according to their k-nn
distance norm (L1) before being warped to image space us-
ing the computed texture parametrization. Finally, after all
pixels are sampled, the material is added back and the image
is blended with the original image as described previously.
The main algorithm steps are illustrated in Fig. 5.

8. Perceptual Normalization of Image Contrast

While a binary metric that detects the presence or absence
of common rendering artifacts is useful, for most practical
purposes it is also desirable to predict the perceived strength
of these artifacts. The prediction of the perceived strength
of artifacts in no-reference metrics involves additional chal-
lenges due to the absence of a reference image (Ire f ). At
a conceptual level, full-reference metrics often assume that
the evaluated test image Itst is simply Ire f plus some distor-
tions D, and thus, D can be obtained by Ire f − Idst . Without
Ire f , obtaining D from Idst is not trivial. To that end, we take
advantage of the observation that the rendering artifacts we
consider are of medium to high frequency, and approximate
Ire f via inpainting Itst (Section 7).

Given a rendered image, we employ a multiscale lumi-
nance contrast perception model [MDK08] to compute the
hypothetical supra-threshold HVS response. The outcome of
this computation is perceptually linearized local contrast of
the input image. To do so, we first compute a 6-level Lapla-
cian pyramid of image luminance L. Then, a Wilson’s trans-
ducer [Wil80] function T is applied at each pyramid level
Lk. The transducer function operates on HVS-referred values
which take human spatial contrast and adaptation luminance
sensitivity into account. The luminance adaptation map is
approximated by the low-pass residue of the Laplacian pyra-
mid.

The process above is repeated separately for Ire f and Itst :
given the luminance differences Lk and HVS sensitivities
S, the transducers non-linearity models the contrast self-
masking properties of the visual system at each pyramid
level k. The differences of HVS responses scaled in Just No-
ticeable Difference (JND) units are then combined using a
Minkowski summation with exponent 2. Formulae and im-
plementation details are summarized in the supplementary
material.

9. Results

We have tested our method on a set of 24 images gener-
ated from several 3D scenes (subset shown in Fig. 1), com-
posed of 6 images containing glossy VPL artifacts, 12 im-
ages with shadow map artifacts, and 6 with VPL clamping
artifacts. These images were rendered with different soft-
ware: a GPU-based deferred renderer, an instant radiosity
(VPL) renderer, a pathtracer and lightcuts [WFA∗05] imple-
mentation, for producing the shadow map artifacts, glossy

Artifact-Image Texture Artifacts Reference

False-positive rate

Re
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False-positive rate

Re
ca

ll

Ground truth labels
Only color-based 

( 84.3 % )
Color + depth + material

( 91 % )

Figure 6: Additional depth and material information im-
proves the artifact detection significantly (4th image) com-
pared to pure image-based classification (3rd image).

VPL noise and clamping bias, and reference images, respec-
tively. Each image has a corresponding depthbuffer, diffuse
material buffer and a reference image. This small number of
images may seem too low compared with pure image classi-
fication. However, remember that we train the classifier only
on small multi-resolution subimages, which are also of low-
dimension due to our decorrelation with geometry and ma-
terial.

For training each artifact we extracted approximately
15.000 randomly sampled subimages (50% positive and
50% negative samples) from all images excluding the one
for present testing. The most discriminative features we have
found (which are also shown in Table 1) are: SSAO (Sec-
tion 5.2.2), rectified depth histograms of oriented gradients
(HoG) (see Section 5.2.3), rectified light HoG (i.e., color
without textures as described in Section 5.2.1), multi-scale
light, depth, and material statistics (i.e., variance, skewness,
kurtosis, Section 5.2.5), and frequency analysis of the dif-
ference of bilateral-filtered images (bilateral DCT) (Sec-
tion 5.2.4). SSAO is very effective in detecting clamping
bias but only in combination with other features since iso-
lated, it always predicts clamping even in reference images.
The most important feature overall is the (rectified) HoG for
color, which also slightly outperformed the bilateral DCT
feature. In general, having more information behind the pix-
els clearly improves classification as shown in Fig. 6. We
tested our descriptors on SVMs and approximate k-nearest
neighbor (k-nn) classifiers (with 5 k-nn). The difference is
quite diverse. For the shadow artifacts SVM clearly outper-
formed k-nn (approx. 10% smaller error) whereas for rela-
tively fuzzy artifacts, clamping and VPL noise, both meth-
ods performed similar. Therefore, in our results we only pro-
vide results for SVM.

Shadow Map  ROC
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Clamping Bias  ROC Glossy VPL  ROC

False-positive rate
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ll

Re
ca

ll

False-positive rate

Figure 7: Mean ROC curves for the shadow map (left), VPL
clamping (center), and glossy VPL artifacts (right).

A visualization of our detected artifacts versus ground
truth user annotations is shown in Fig. 8. Further, numer-
ical results and statistics can be found in Table 1 and in
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R. Herzog, M. Čadík, T. O. Aydın, K. I. Kim, K. Myszkowski, H-P. Seidel / NoRM: No-Reference Image Quality Metric

the average receiver operating charateristics (ROC) curves
(Fig. 7) for the different artifact classes. The classification
works best for the shadow mapping artifacts. This is not sur-
prising as shadow aliasing has usually a distinctive regular
structure and high contrast, whereas the VPL clamping bias
and glossy noise is difficult to address locally and without
the global scene knowledge might be mistaken as shadow or
highlights, respectively. Moreover, the initial user labeling is
very subjective and any mistake (wrongly marked or missing
artifact label) confuses the classifier rendering the problem
much more complex and noisy, which also shows the down-
side of a data-driven approach. However, we highlight (in
Sections 8,10) how to transform the initial noisy classifica-
tion into a perceptualized output in form of a distortion map,
which is comparable with reference-based VDPs. Besides,
we should stress that some of our training examples (clamp-
ing bias) exhibit only subtle artifacts, which were even con-
fused by human subjects in our user study.

Class Features SVC
(C, γ)

Img.
#

Acc.
[%]

1-BER
[%]

Sh
ad

ow Light-HoG-16×4×4, Light
Bilateral DCT, Depth (Skew)

31.1,0.036 #5 95.7 89.5
31.1,0.036 #6 96.2 84.7
31.1,0.036 #7 91.2 69.2
31.1,0.036 #8 86.6 90.4

C
la

m
pi

ng SSAO, Depth-HoG-16×2×2,
Light-HoG-16×3×3, Light
(Skew), Mat. (Var, Kurt)

10.3,0.027 #9 92.0 74.2

10.3,0.027 #10 91.6 58.8

V
PL

no
is

e SSAO, Depth-HoG-16×2×2,
Light-HoG-16×3×3, Light:
(Var, Kurt), Depth: (Var,
Skew), Mat.: (Var, Skew)

9.2,0.02 #1 91.2 65.6
9.2,0.02 #2 85.0 68.2
9.2,0.02 #3 95.0 89.9
9.2,0.02 #4 75.8 71.6

Table 1: The classification accuracy (Acc) and balanced er-
ror rate (BER) for different artifacts together with classifica-
tion parameters (SVC) and the optimized feature set for each
artifact type. The 3 dimensions of the HoG feature define the
angular, spatial-X, and spatial-Y resolution of the histogram,
respectively. The statistics over local light, depth, material
(Mat.) regions are Variance (Var), Skewness (Skew), Kurto-
sis (Kurt). Corresponding predictions are shown in Fig. 8.

The inpainting procedure works well for diffuse surfaces
and even better for textured surfaces, which mask small
inpainting errors (see Fig. 8, 2 last rows). On glossy sur-
faces with smooth low-frequency gradients and color bleed-
ings inpainting seams may become visible but the overall
quality is still improved. In particular, the shadow map ar-
tifacts are easy to cure and are perceptually hard to dis-
tinguish from the reference. However, there are also a few
challenges. First, there is a tradeoff between patch size and
reconstruction quality. If the patches are too small the arti-
fact structure might be overlooked (e.g., for the shadow map
aliasing we need a larger window to recognize the “jaggy”
structure of the edge), whereas too large patches quickly in-
crease the search space (curse of dimensionality) and pro-
duce overly blurred results. Besides, the larger the variety of
image patches in the database, the better is the resulting in-
painting quality. Currently, we extract in total around 50.000

16×16 patch pairs from the first 2 pyramid levels of the ref-
erence and artifact images. The patches also compress well
and any dimension reduction (e.g., via PCA) would further
speed up the inpainting and reduce the memory footprint
considerably. Such improvements we leave as future work.

In general, the results of the inpainting procedure are sub-
jectively better than the original distorted images, but they
are not perfect and may still exhibit perceivable differences
to artifact-free images. However, the main purpose of the in-
painting step is to generate a pseudo-reference that makes
perceptual normalization possible resulting in clearly im-
proved quality of the distortion maps, as one may see in
Fig. 8 (row 8) as well as in correlation values (Table 2).

10. User Study

We performed a subjective user study to validate the pre-
diction performance of our metric. To our best knowledge
this was the first attempt to subjectively label locations of
visual artifacts caused by rendering techniques both in with-
and without- the reference setups. Furthermore, we per-
formed the comparison of existing full-reference metrics,
which were not validated for the detection of rendering ar-
tifacts before. In this section, we summarize the obtained
results, please refer to the supplementary material for a de-
tailed discussion of the user study.

In the experiment, we displayed the set of 10 rendered
test images (see Fig. 1) on a calibrated monitor to a group of
20 observers (15M/5F, aged 21–38, all of whom had normal
or corrected vision). The observers were asked to mark the
perceived artifact regions using a custom scribbling appli-
cation. We performed two experiments: with-the-reference,
where an image exhibiting rendering artifacts was presented
along with the reference image; and without-the-reference,
where subjects saw only the distorted image.

The marked regions for each trial were stored as distor-
tion maps, which were then averaged over all subjects to find
the mean subjective response. Next, the metric prediction for
the corresponding stimulus was computed. Besides our pro-
posed metric, we involved two full-reference metrics in the
evaluation. Results of the experiment are visually summa-
rized in Fig. 8. For the numerical analysis, we computed the
2D correlation between the mean subjective response and the
metric prediction (for each test image and each experiment
separately), as shown in Table 2.

Interestingly, the subjective distortion maps show appar-
ent agreement between the artifact perception experiments in
the presence and absence of the reference, which is corrobo-
rated by high correlation values (second column in Table 2).
The exceptions are images 9 and 10, where the perceptual
strength of clamping bias artifacts is rather low. The subjects
are seemingly able to mark strong artifacts quite accurately
without seeing the reference, while for perceptually weak ar-
tifacts, the reference is needed.
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Figure 8: Results of the user study for test images #1
and #5: average subjective artifact strenghts, and the com-
parison to predictions of current state-of-the art full refer-
ence metrics as well as the proposed no-reference technique.
(Please refer to the supplementary material for all the images.)

Distortion maps produced by classifier (NoRM) are bi-
nary, meaning the presence or absence of an artifact. These
distortion maps sometimes tend to show too many locations,
which may be correct, but the artifact severity is in reality
obviously not uniform. However, thanks to the inpainting
procedure, we are able to perform the perceptual normal-
ization step (Section 8), which makes the strength of de-
tected artifacts substantially closer to average subjective dis-
tortion maps. The prediction after the perceptual normaliza-
tion (NoRMperc.) is a continuous supra-threshold distortion
map calibrated in JND (just noticeable differences) units.

We compared the predictions of the proposed no-
reference metric NoRM, with the state-of-the-art
full-reference metrics HDR-VDP2 [MKRH11] and
SSIM [WBS∗04]. Neither HDR-VDP2 nor SSIM were
designed or calibrated to predict the strength of render-
ing artifacts, but the distortion maps they produce are
quite plausible. According to average correlations to the
subjective ground truth distortion maps, SSIM slightly
outperforms HDR-VDP2 (0.56 vs 0.535). The result of
our metric (0.534) is qualitatively quite similar, making
it competitive with current full-reference metrics in the
targeted application. Finally, the perceptual normalization
step makes predictions of NoRMperc. even closer to the
experimental ground truth, resulting in the highest average
correlation (0.586).

Image
#

subj.
no-ref.

HDR-
VDP2

SSIM NoRM NoRM
perc.

1 0.903 0.725 0.674 0.628 0.662
2 0.908 0.579 0.538 0.558 0.590
3 0.828 0.778 0.643 0.682 0.727
4 0.913 0.495 0.469 0.298 0.436
5 0.769 0.542 0.602 0.677 0.748
6 0.772 0.669 0.742 0.638 0.767
7 0.857 0.390 0.374 0.383 0.479
8 0.805 0.618 0.692 0.607 0.657
9 0.510 0.418 0.231 0.416 0.320
10 0.186 0.134 0.637 0.450 0.470
Average 0.745 0.535 0.560 0.534 0.586

Table 2: Correlations of subjective responses in with-
the-reference experiment with subjective responses in no-
reference experiment and with the predictions of HDR-
VDP2, SSIM, NoRM and NoRM after the perceptual nor-
malization. The last row shows the average correlations over
the test set. The best correlations (excluding the no-reference
subjective experiment) for each stimulus are printed in bold.

11. Conclusions and Future Work

In this paper, we proposed a novel learning based no-
reference image quality metric for computer-generated im-
ages, which, as shown in our user study is competitive in
performance with state-of-the-art visual difference predic-
tors that do require a reference. Our work enables detecting
and partially removing rendering artifacts. An important re-
sult of this work is that the depth and partial material infor-
mation used in conjunction with color data drastically im-
proves the classification, and even the inpainting procedure
(see Fig. 6). We also present the first comparative subjective
study of quality metrics on synthetic images.
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Exploring further sources of information as well as clas-
sification techniques is a natural future direction. Also, a
more challenging problem is quality assessment of the im-
ages with multiple types of artifacts. In the future we would
like to investigate the classification of combined artifacts us-
ing a multi-class classifier and imposing a smoothness prior
on the classified labels which could be facilitated by adopt-
ing e.g., Markov random fields using belief propagation in
order to spatially smooth the labels while incorporating the
correlations between different artifacts.
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