
Dynamic Sparsi�cation for Quadratic Assignment

Problems

Maximilian John and Andreas Karrenbauer

Max Planck Institute for Informatics, firstname.lastname@mpi-inf.mpg.de

Abstract We present a framework for optimizing sparse quadratic as-
signment problems. We propose an iterative algorithm that dynamically
generates the quadratic part of the assignment problem and, thus, solves
a sparsi�ed linearization of the original problem in every iteration. This
procedure results in a hierarchy of lower bounds and, in addition, pro-
vides heuristic primal solutions in every iteration. This framework was
motivated by the task of the French government to design the French
keyboard standard, which included solving sparse quadratic assignment
problems with over 100 special characters; a size not feasible for many
commonly used approaches. Designing a new standard often involves
multiple stakeholders having con�icting opinions and, hence, no agree-
ment on a single well-de�ned objective function to be used for an exten-
sive one-shot optimization. Since the process of designing the standard
is highly interactive, it demands rapid prototyping, e.g., quick primal
solutions, on-the-�y evaluation of manual changes, and prompt assess-
ments of solution quality. Particularly concerning the latter aspect, our
algorithm is able to provide high-quality lower bounds for these problems
within only a few minutes.

Keywords: quadratic assignment · integer programming · linearization
· keyboard optimization

1 Introduction

Assignment problems aim at �nding the cheapest one-to-one correspondence
between n items and locations. Already in 1946, Birkho� [4] showed that the
optimal assignment can be found in O(n3) time if the objective function is lin-
ear. However, linear objective functions cannot capture pairwise dependencies
between variables. Koopmans and Beckmann [16] investigated a variant with
quadratic terms in the cost function. This quadratic optimization problem in-
cludes several practical applications, such as the keyboard layout problem [6],
the facility location problem [19], the traveling salesman problem [5], and many
others.

As expected, great modeling power comes with increased hardness; there are
problems of only n = 30 items that cannot be solved to optimality in reasonable
time. From a complexity theoretical point of view, Queyranne [23] showed that
the quadratic assignment problem (QAP) is NP-hard to approximate within any

constant factor, even if the quadratic cost can be factorized to a symmetric block
diagonal matrix and a distance matrix describing a line metric.

To cope with the hardness, researchers have proposed many strategies over
the last decades. Many of them are based on linearizations, e.g., the classical
results by Gilmore [11] and Lawler [17], and by Kaufman and Broeckx [15]. These
linearizations can be considered light, meaning that their space requirements are
linear in the input size and the corresponding relaxations can be solved quickly,
e.g., in a branch-&-bound framework. Moreover, the latter approach seems to be
amenable for primal heuristics of state-of-the-art MIP solvers to compute good
incumbents. However, their lower bounds deteriorate quickly with increasing
input size, which negatively impacts the performance of branch-&-bound. More
recently, new improved linearizations have been developed by Xia and Yuan [25]
and Zhang [26], who combine the ideas of the light-weight approaches mentioned
above.

On the contrary, the formulations by Frieze and Yadegar [10] and by Adams
and Johnson [1] compute very strong lower bounds at the expense of O(n4) ad-
ditional variables. Both approaches yield equivalent formulations for the QAP
and are commonly referred to as RLT1 formulations, a more general concept
proposed by Sherali and Adams [24]. Huber and Riedl showed [13] that the
Adams-Johnson formulation dominates the one of Xia and Yuan. For many in-
stances of practical size and especially in our scenario, RLT1 and other similar
more powerful approaches could not produce any results within the given re-
sources, which we expected, due to the sheer size of the problem.

Recently, semide�nite programming relaxations for QAPs [14,22,27] have be-
come more popular. Peng et al. [20] showed that these approaches indeed often
produce good lower bounds for the QAP.

1.1 Keyboard optimization as assignment problems

Already in the 70s, Pollatschek [21] as well as Burkard and O�ermann [6] pro-
posed to optimize keyboard layouts as a quadratic assignment problem. They
consider the assignment problem with mixed linear and quadratic terms in the
objective function. Formally, let the n characters and keys be numbered from
1 to n. We refer to the set of characters as [n] := {1, . . . , n}. Furthermore, let
xik ∈ {0, 1} denote the decision of whether or not to assign character i to key
k. With cik being the linear and qijk` the quadratic assignment cost, we obtain
the following quadratic program.

min
n∑

i,k=1

cikxik +
n∑

i,j,k,`=1

qijk`xikxj`

subject to
n∑
i=1

xik = 1 ∀k ∈ [n]

n∑
k=1

xik = 1 ∀i ∈ [n]

xik ∈ {0, 1} ∀i, k ∈ [n]

(1)

The term qijk` describes the cost of simultaneously assigning character i and
j to the key k and `, respectively. In keyboard problems, this term usually factors
into qijk` = pij · dk`, where pij denotes the empirical probability of typing letter
j after letter i, and dk` is the time between pressing the key slots k and `.

Typically, integer linear programs are relaxed by dropping the integrality
constraints of the variables. In this case, however, as the assignment polytope
is well-understood, we can quickly solve linear assignment problems with over
a million variables [18]. The hardness of QAPs comes, therefore, not from the
polytope, but from the quadratic terms of the objective function. It is possible to
exploit the structure of the objective so that special cases become more tractable,
in some cases polynomial approximation algorithms have been developed [3].
In this work, we de�ne a relaxation of the QAP, too. While also keeping the
integrality constraints untouched, we exploit the sparse nature of the quadratic
objective function and modify the quadratic terms to obtain upper and lower
bounds for the original problem.

1.2 Designing the French keyboard standard

In 2015, the French Ministry of Culture discussed the concerns about not having
an o�cial French keyboard standard [7]. The commonly used AZERTY layout
did not permit typing frequent special characters like À, ÷, etc. One year later,
AFNOR, the French national organization for standardization, was designed
the task of designing the new standard [8], which should support all missing
special characters that are used in the French language. Two major options were
discussed: optimizing the whole keyboard from scratch, or keeping the most
frequent characters (A-Z) �xed and only optimizing the addition of over 100
special characters, the latter of which would maintain familiarity and facilitate
learnability. We participated in the endeavor to achieve the second option.

The process of de�ning the standard consisted of several rounds of gathering
data (details in [9]), modeling the problem as a QAP, �nding a (near-)optimal
keyboard, presenting it to an o�cial committee who expressed further wishes for
the objective, modifying the weighting of its components, and adding or remov-
ing certain characters. Eventually, the objective function stabilized as a conic
combination of four di�erent measures: performance � special characters that
are often used in combination with �xed characters should be close together in
order to minimize the time to type; ergonomics � frequently used special char-
acters should be quite central on the keyboard to avoid unhealthy stretches of
the �ngers; intuitiveness � special characters should be placed close to similar
�xed characters and other special characters to simplify �nding them on the key-
board; familiarity � frequent special characters should be placed close to their
position in the original AZERTY keyboard if this character was already posi-
tioned there. Note that every interaction between special characters and �xed
characters can be modeled as linear expressions because we are not allowed to
change the position of these �xed characters, therefore keeping their impact to
the objective function constant. Hence, 3 out of 4 of these measures describe a
linear objective function. The quadratic part of the objective function models

Figure 1: The new French keyboard standard (NF Z71-300). Special characters
(blue) and diacritic marks (red) were added to the old AZERTY layout. More
information about the new standard can be found on https://norme-azerty.fr

the similarity of two special characters, which is part of the intuitiveness mea-
surement. Since there is only a restricted number of similar special characters,
e.g., é and è, this explains the sparsity of the quadratic objective function.

After a �rst consensus had been found, a public inquiry organized by AFNOR
provided feedback on the proposed design. Not only after the public inquiry,
but also after every iteration of this feedback loop, the underlying model was
updated and new solutions were heuristically computed; which our algorithm
then showed to be near-optimal. Why is this last step important? In contrast
to one-shot optimization with a single well-de�ned objective, the committee,
which consists of multiple stakeholders with di�erent interests and opinions,
discusses several solutions, evaluates the impact of manual changes on di�erent
parts of the objective, and alters the optimization model to �nd a compromise.
Deciding model changes based on very sub-optimal solutions is pointless, since
the observed solution might not properly represent the current model. Therefore,
it is not only important to �nd near-optimal solutions, but also to have a sharp
picture of the their quality, allowing for a well-founded discussion and decision
process. Additionally, it is important that such solutions to updated models
and corresponding bounds can be computed as fast as possible, ideally even in
real-time.

Finally, the expert committee agreed on a layout for the new French keyboard
standard [2], which is depicted in Figure 1 and was launched on 2 April 2019.1

1.3 Our contribution

The goal of our framework is to utilize the power of the RLT1 approach while
avoiding the computational overhead. We present an algorithm that dynami-

1 https://normalisation.afnor.org/actualites/faq-clavier-francais/ � retr. 2019-04-03

cally generates the quadratic terms of the QAP and leads to a hierarchy of
lower bounds and heuristic primal solutions at the same time. In contrast to a
classic column-generation approach, our algorithm guarantees a sequence of non-
decreasing lower bounds in every step instead of non-increasing upper bounds.
This iterative framework produces a (1+ε)-approximation2 for the QAP for any
ε ≥ 0. We show the success of our framework during the design process of the
new French keyboard standard. The lower bounds computed by our algorithm
showed very small optimality gaps within a few minutes for sparse QAPs with
over 100 items and 130 locations. All examples shown in this paper are real-world
instances created during this standardization process. Hence, our tool is usable
to provide almost real-time feedback with very limited resources, e.g., a laptop.

2 Algorithm

Linear relaxations for quadratic programs have been extensively studied over the
last decades and are still a good starting point for many new ideas. However, the
disadvantage of standalone linear relaxations is either high space complexity or
an ine�cient bound generation. We want to overcome this issue for QAPs with
sparse quadratic objectives.

Let S ⊆ [n]4 be a set of indices. We de�ne the following subproblem of (1).

min

n∑
i,k=1

cikxik +
∑

(i,j,k,`)∈S

qijk`yijk` (2a)

subject to
n∑
i=1

xik = 1 ∀k ∈ [n]

n∑
k=1

xik = 1 ∀i ∈ [n]∑
j:(i,j,k,`)∈S

yijk` ≤ xik ∀i, k, ` ∈ [n] (2b)

∑
`:(i,j,k,`)∈S

yijk` ≤ xik ∀i, j, k ∈ [n] (2c)

∑
i:(i,j,k,`)∈S

yijk` ≤ xj` ∀j, k, ` ∈ [n] (2d)

∑
k:(i,j,k,`)∈S

yijk` ≤ xj` ∀i, j, ` ∈ [n] (2e)

xik + xj` ≤ 1 + yijk` ∀(i, j, k, `) ∈ S (2f)

yijk` ∈ [0, 1] ∀(i, j, k, `) ∈ S
xik ∈ {0, 1} ∀i, k ∈ [n]

2 We give no polynomial time guarantee. A PTAS would imply P = NP.

Note that it is feasible to add symmetry constraints for the y-variables of
the form yijk` = yji`k inspired by the Adams-Johnson formulation because they
simulate the commutative multiplication of xik and xj`, however, we could not
observe any performance gain, and thus, omit them.

We �rst show that the proposed formulation is exact in the boundary case
S = [n]4.

Lemma 1. Let S = [n]4 and let z(1) = x(1), z(2) = (x(2), y(2)) be optimal solu-

tions of (1) and (2), respectively.
Then cost(z(1)) = cost(z(2)).

Proof. Let (i, j, k, `) ∈ [n]4 and consider the linear inequalities (2b)-(2f). If one
of x(2)ik and x(2)j` is 0, then at least one of the inequalities (2b) to (2e) forces y(2)ijk`
to 0. On the other hand, if both x(2)ik = x

(2)
j` = 1, constraint (2f) sets y(2)ijk` to 1.

Therefore, and because x(2) is a binary variable, we can interpret y(2)ijk` as the

product x(2)ik · x
(2)
j` .

Since S = [n]4, this observation holds for all variables and the formulations
(1) and (2) coincide. ut

Despite this result, we emphasize that using S = [n]4 leads to an intractable
problem size for most practical input instances, e.g., more than 100 000 000 vari-
ables in our application. Even for sparse problems, reducing S to all the indices
with nonzero contribution to the quadratic objective term may not su�ce as,
e.g., still about 2 000 000 variables remain in our case. To overcome this issue, we
select an increasing sequence of subsets S, with each subset being signi�cantly
smaller than [n]4. Lemma 2 explains why it is bene�cial to do so.

Lemma 2. Let S ⊂ [n]4 and z∗ be the optimal solution of (2). Then cost(z∗)
is a lower bound for (1).

Proof. Let (P, c, q), (P ′, c′, q′) be the polytopes and objective functions of (2)
de�ned over S and [n]4, respectively. Clearly, the set of constraints of P form
a subset of the constraints of P ′. Hence, every feasible solution in P ′ is also
feasible in P , i.e., P ′ ⊆ P .

Setting qijk` = 0 for all (i, j, k, `) 6∈ S, we can write (2a) as

n∑
i,k=1

cikxik +
∑

(i,j,k,`)∈[n]4
qijk`yijk`.

Since all terms in the objective functions are assumed to be non-negative, it
holds for every (i, j, k, `) ∈ [n]4 that qijk` ≤ q′ijk`, which concludes the proof. ut

This lemma shows that dynamically increasing S yields a hierarchy of inte-
ger linear programs with increasing bounds for the original QAP. The proposed
iterative algorithm later in this section is a natural consequence of Lemma 2. It
remains to show how to initialize and update the set S. We remark here that

it is advisable to solve the integer linear programs close to optimality instead
of considering their linear programming relaxations. Although dropping the in-
tegrality constraints drastically reduces the computation time with growing S,
the resulting lower bounds have shown to be signi�cantly worse than the ones
obtained by solving the integral versions for the same amount of time.

We now present two variants of the algorithm, which di�er only in the pro-
cedure on how to grow S.

Variant 1: conservative growth First, we choose an arbitrary ε ≥ 0. We
will show later that the algorithm then produces a (1 + ε)-approximation of the
optimal assignment. Note, however, that our algorithm allows to choose ε = 0,
then computing an optimal solution. Assume that for a given index set S, we
computed an optimal binary solution (x∗, y∗) with objective value V . We build
the candidate set

C :=
{
(i, j, k, `) 6∈ S : x∗ik = x∗j` = 1 and qijk` > 0

}
(3)

and sort C in an ascending order with respect to qijk`. Note that |C| ≤ n2.
Formally, we de�ne the function π : [|C|] → [n]4 such that for every i < j ∈
{1, . . . , |C|}, it holds qπ(i) ≤ qπ(j). Let s be the index that satis�es the following
equation.

s = max

{
t ∈ {0, . . . , |C|} :

t∑
α=1

qπ(α) ≤ ε · V

}
(4)

Intuitively, we skip the s smallest positive cost values that sum up to a certain
threshold and add the rest of the indices to our active set S.

The complete algorithm is presented in Algorithm 1. Theorem 1 shows that
the update step eventually yields a (1 + ε)-approximation.

Input : number of items/locations n, linear cost c, quadratic cost q,
precision parameter ε

Result: Optimal assignment or upper/lower bound if aborted

1 S ← ∅;
2 do

3 (x∗, y∗)← opt. sol. of (2) with S;
4 V ← evaluate x∗ at (1);
5 C, π, s as in equations (3)-(4);

6 S ← S ∪ {π(i)}|C|i=s+1;
7 while S changed in line 6;
8 return x∗;

Algorithm 1: The complete algorithm (conservative version)

Theorem 1. Let ε ≥ 0. If line 6 of Algorithm 1 does not add any index to S,
then the x-part of the current solution (x∗, y∗) is (1+ε)-optimal for problem (1).

Proof. Since C ∩ S = ∅ by de�nition, the only reason why S did not change is
that s = |C|. In particular, this means that∑

α∈C
qα ≤ ε · cost(x∗, y∗)

Let x̃ be the optimal solution of (1). We evaluate (x∗, y∗) on the complete
objective function of the QAP and interpret y∗ijk` = x∗ikx

∗
k`, which is a valid

assumption already shown in the proof of Lemma 1. Then, we obtain an upper
bound for x̃.

OPT =
n∑

i,k=1

cikx̃ik +
n∑

i,j,k,`=1

qijk`x̃ikx̃j`

≤
n∑

i,k=1

cikx
∗
ik +

∑
(i,j,k,`)∈S

qijk`x
∗
ikx
∗
j` +

∑
(i,j,k,`) 6∈S

qijk`x
∗
ikx
∗
j`

=
n∑

i,k=1

cikx
∗
ik +

∑
(i,j,k,`)∈S

qijk`x
∗
ikx
∗
j` +

∑
(i,j,k,`)∈C

qijk`x
∗
ikx
∗
j`

≤ cost(x∗, y∗) + εcost(x∗, y∗) = (1 + ε)cost(x∗, y∗)

ut

Variant 2: progressive growth We change the de�nition of the candidate set
C in Equation (3) to

C ′ :=
{
(i, j, k, `) 6∈ S : x∗ik = 1 ∨ x∗j` = 1 and qijk` > 0

}
. (5)

This means we consider a tuple as a candidate if at least one of the corresponding
x-variables were set to 1 in the previous optimal solution (instead of requiring
both variables to be 1). The rest of the algorithm remains the same. In this
second variant, |C ′| ≤ n3, i.e., we potentially add more terms to the model.
This can improve the evolution of lower bounds because we consider a more
substantial portion of the model more quickly. As a trade-o�, we potentially add
more irrelevant terms than the conservative variant and, additionally, we could
quickly arrive at a model of a size that exceeds the resources of the computer
used to run the algorithm. Note that Theorem 1 also holds for this variant of
the algorithm, the proof is analogue to the proof shown above with the extra
information that C ⊂ C ′.

Variant 3: Hybrid strategy To achieve a balance between the fast evolution
of lower bounds in variant 2 and the moderate growth of model size in variant
1, we propose the hybrid strategy that kick-starts with the progressive variant 2
and switches to the conservative variant 1 before the model size grows too large.
The evaluation shows that this strategy is indeed superior to both standalone
variants. For all instances, there is a critical point where the amount of generated
quadratic terms would grow so large that an MIP solver cannot compute the
integer optimal solution within a reasonable time. Therefore, we switch to the
conservative variant at this critical point, which grows the model more slowly
while still steadily improving the lower bound.

3 Evaluation

We applied our algorithm within several stages of the French keyboard stan-
dardization process. The instances consist of over 100 special characters and 130
keys (in order to achieve the classic QAP formulation, one can generate dummy
characters symbolizing that a key is left empty), and the objective function con-
sists of a conic combination of a sparse quadratic and dense linear cost terms.
The quadratic term can be factorized into a sparse matrix F , which describes
the association score (similarity) of two di�erent special characters, and a dense
matrix D, describing the distances between two key slots. The weight of the
quadratic part ranges between 30% and 50%. Additionally, some instances �x
few characters like punctuation symbols to �xed slots or require that the capital
versions of special characters are placed on the shifted slot of the same letter
(e.g., È is placed on the shifted slot of è) whereas other instances also allow them
to be on the Alt-Shift or Alt version of this slot.

We evaluated the instances on a single Intel(R) Xeon(R) CPU E5-2680 v3 @
2.50GHz processor core with 16GB of RAM. We compare our algorithm against
the formulation of Xia and Yuan [25] as a state-of-the-art lightweight lineariza-
tion for the QAP. As already mentioned before, stronger formulations like RLT1
could not compute any lower bound within the given resources, often because the
model size already exceeded the available RAM. We use Gurobi version 8.1 [12]
as the underlying solver for both approaches.

We �rst discuss the impact of the variant choice on one example instance.
More speci�cally, we test the hybrid strategy and the e�ect of the switch from

Figure 2: The evolution of the lower bound when switching variants for instance
N50s. The numbers in the legend describe the iteration at which the switch was
triggered.

progressive to conservative at di�erent iterations τ . Figure 2 shows the evolution
of lower bounds for τ = 1, . . . , 10. Since naturally the bound evolves faster during
the �rst seconds and minutes, the graph shows a more detailed view on the
evolution within this �rst period. Setting τ = 1 leads to using the conservative
variant from the beginning while setting τ = 10 implies that the strategy switch
does not occur within the given time window of 12 hours because the model of
the last iteration is already too large to be solved e�ciently. We observe that as
long as the model size is moderately low, the progressive variant achieves better
results at every time stamp. However, after roughly 45 minutes, the model size
for this variant already grows notably large so that the next iterations takes quite
a long time. After yet another size increase, the ILP solver could not compute
an optimal solution within the remaining 10 hours. Note that depending on the
available resources (time limit and hardware) as well as the particular instance
(dimension and sparsity), the critical point at which a switch from the progressive
to the conservative variant is valuable varies. Since all our instances are of similar
size and sparsity, the critical point for this evaluation is at the 9th iteration.

Figure 3 compares the evolution of the lower bounds of our algorithm using
only variant 2, switching after 9 iterations, and the formulation of Xia and Yuan
within a total time period of 12 hours for the same example instance. It is
important to note that the setup time for the Xia-Yuan formulation is around
25 minutes for every instance because over 10 000 linear assignment problems
are solved beforehand. Therefore, the �rst bound for the original QAP is only
produced after 25 minutes.

To avoid visual clutter in the following �gures, we only depict the results of
the hybrid algorithm switching at the 9th iteration. The lower and upper bounds
for all QAP instances are shown in Figure 4. We ran our hybrid algorithm for

Figure 3: The evolution of the lower bounds within 12 hours of computation time
for instance N50s.

Figure 4: Lower and upper bounds for the QAP instances

one hour and compare it against the formulation of Xia and Yuan after one and
12 hours of computation time.

The naming of the test instances is as follows: the �rst letter describes the
set of additional constraints (N for no additional constraints, and E for �xed
punctuation symbols and the �xed symbols è, é, ê, à, and e). The number in the
middle describes the weight (in percent) of the quadratic term in the objective
function, and the following letter describes if the capitalized letter of a special
character has to be placed on the shifted slot (s) or on any alternative of this
slot (r). Note that almost every instance uses a slightly di�erent set of characters
because this set constantly changed in committee meetings. The full description
of all the di�erent character sets and further details about the data gathering is
beyond the scope of this paper and can be found in [9]. Therefore, it occurs that
two instances are equally named although they slightly di�er in the character set
used. In this case, one of the instance names ends with 2 for better di�erentiation.

We can see that within one hour, we outperform the formulation of Xia and
Yuan for every instance independent of its time limit being one hour or 12 hours.
Although we slightly improved the lower bounds of all instances, this is not the
true bene�t of our framework. What we really want to emphasize here is how
fast we achieve high-quality lower bounds, which is especially important in the
practical application of our algorithm. In this highly interactive environment
with countless model updates and changes, receiving valuable feedback of an op-
timization method after only several minutes can greatly improve the dynamics
of an expert committee that discusses di�erent proposals and has to decide the
next steps towards a �nal keyboard standard.

We measure the time our algorithm needs to exceed the lower bounds that the
Xia-Yuan formulation produces after 1 hour and 12 hours, respectively. Figure 5
shows that we achieve this goal within several minutes for all instances. In the

Figure 5: The time we need to exceed the bounds of Xia and Yuan after 1h and
12h (in seconds)

worst case, it takes 20 minutes to exceed the 12 hours bound of Xia-Yuan. Hence,
for every instance, we achieve superior lower bounds within the setup time of 25
minutes that is needed for the creation of the Xia-Yuan linearization.

3.1 Robustness Analysis

To analyze the robustness of our approach, we vary the nonzero values of the
quadratic cost matrix with additive noise generated by a normal distribution
with 0 mean and standard deviation σ.

0s 50s 100s 150s 200s 250s 300s

σ = 0.1µ

σ = 0.5µ

σ = µ

Figure 6: Boxplots of the time (in seconds) until our approach exceeded the 12
hours Xia-Yuan bound

Recall that the quadratic matrix Q is the Kronecker product of the dense
matrix D containing the distances between the keys and the sparse matrix F
encoding the similarity between the special characters. We only add noise to the
entries in F while keeping its entries non-negative. More speci�cally, consider
fij > 0 and δij ∼ N(0, σ), then we set f ′ij = fij + δij if f ′ij > 0, otherwise we
recompute δij . Let µ be the average value of all nonzero entries in the association
matrix A, then we set σ to 10%, 50%, and 100% of µ. For this evaluation, we
use the instance N35s as a base instance and generate 20 randomly variated
instances for each of the three variance values.

Figure 6 shows the boxplots of the time (in seconds) our approach needed
to exceed the bound that the Xia-Yuan formulation achieves after 12 hours. In
every of the 60 instances in total, we exceeded said bound after at most �ve
minutes. Note that the Xia-Yuan formulation has a setup time for around 25
minutes for instances of this size. This means we can consistently produce high
quality bounds during the setup time of the competing approach.

Moreover, Figure 7 shows the lower and upper bounds for the 20 runs each
with σ ∈ {0.1µ, 0.5µ, µ}, respectively. We observe that the results of these ran-
domized instances are very consistent with the results of the original evaluation,
independent of the variance.

σ = 0.1µ σ = 0.5µ σ = µ

Figure 7: Bounds for 60 randomly variated instances (20 each) with variance σ

4 Conclusion

We presented a lightweight framework for sparse quadratic assignment prob-
lems that combines powerful linearization techniques and ideas from column-
generation. It is lightweight in a sense that it can generate good bounds for
sparse QAPs of huge size (over 100 items) on a normal laptop. Our algorithm
was used in the process of de�ning the new French keyboard standard. The eval-
uation, which is based on real data gathered during this standardization process,

showed that we can compete with state-of-the-art linearization techniques. We
showed that we can produce high quality lower bounds within several minutes,
which serves the purpose of almost real-time feedback in such a dynamic inter-
active optimization process.

References

1. Adams, W., Johnson, T.: Improved Linear Programming-Based Lower
Bounds for the Quadratic Assignment Problem. DIMACS 512 Series in
Discrete Mathematics and Theoretical Computer Science 16 (08 1994).
https://doi.org/10.1090/dimacs/016/02

2. AFNOR: Interfaces utilisateurs - Dispositions de clavier bureautique français, NF
Z71-300 Avril 2019. La Plaine Saint-Denis: AFNOR, Version de 2019-04-P, 85 p.

3. Arkin, E.M., Hassin, R., Sviridenko, M.: Approximating the maximum quadratic
assignment problem. Information Processing Letters 77(1), 13 � 16 (2001).
https://doi.org/10.1016/S0020-0190(00)00151-4

4. Birkho�, D.: Tres observaciones sobre el algebra lineal. Universidad Nacional de
Tucuman Revista , Serie A 5, 147�151 (1946)

5. Burkard, R.E., Çela, E., Pardalos, P.M., Pitsoulis, L.S.: The Quadratic
Assignment Problem, pp. 1713�1809. Springer US, Boston, MA (1998).
https://doi.org/10.1007/978-1-4613-0303-9_27

6. Burkard, R., O�ermann, J.: Entwurf von Schreibmaschinentastaturen mittels
quadratischer Zuordnungsprobleme. Zeitschrift für Operations Research 21, 121�
132 (1977)

7. DGLFLF: Rapport au Parlement sur l'emploi de la langue française. Government
Report (2015), http://www.culture.gouv.fr/Thematiques/Langue-francaise-
et-langues-de-France/La-DGLFLF/Nos-priorites/Rapport-au-Parlement-sur-l-
emploi-de-la-langue-francaise-2015, from the Délégation générale à la langue
française et aux langues de France of the Ministère de la Culture et de la
Communication. In French.

8. DGLFLF: Vers une norme française pour les claviers informatiques. Government
Publication (2016), http://www.culture.gouv.fr/Thematiques/Langue-francaise-
et-langues-de-France/Politiques-de-la-langue/Langues-et-numerique/Les-
technologies-de-la-langue-et-la-normalisation/Vers-une-norme-francaise-pour-
les-claviers-informatiques, from the Délégation générale à la langue française et
aux langues de France of the Ministère de la Culture et de la Communication. In
French.

9. Feit, A.M.: Assignment Problems for Optimizing Text Input. G5 artikkeliv-
äitöskirja (2018), http://urn.�/URN:ISBN:978-952-60-8016-1

10. Frieze, A., Yadegar, J.: On the quadratic assignment problem. Discrete Applied
Mathematics 5(1), 89 � 98 (1983). https://doi.org/10.1016/0166-218X(83)90018-5

11. Gilmore, P.C.: Optimal and Suboptimal Algorithms for the Quadratic Assignment
Problem. SIAM J. Appl. Math. 10, 305�313 (1962)

12. Gurobi Optimization, L.: Gurobi Optimizer Version 8.1 (2019),
http://www.gurobi.com

13. Huber, C., Riedl, W.: The Quadratic Assignment Problem: the Linearization of Xia
and Yuan is Weaker than the Linearization of Adams and Johnson and a Family of
Cuts to Narrow the Gap, preprint on webpage at https://arxiv.org/abs/1710.02472

14. John, M., Karrenbauer, A.: A Novel SDP Relaxation for the Quadratic Assignment
Problem Using Cut Pseudo Bases, pp. 414�425. Springer International Publishing,
Cham (2016). https://doi.org/10.1007/978-3-319-45587-7_36

15. Kaufman, L., Broeckx, F.: An Algorithm for the Quadratic Assignment Problem
Using Benders' Decomposition. European Journal of Operational Research 2(3),
207 � 211 (1978). https://doi.org/10.1016/0377-2217(78)90095-4

16. Koopmans, T., Beckmann, M.J.: Assignment Problems and the Loca-
tion of Economic Activities. Cowles Foundation Discussion Papers 4,
Cowles Foundation for Research in Economics, Yale University (1955),
http://EconPapers.repec.org/RePEc:cwl:cwldpp:4

17. Lawler, E.L.: The Quadratic Assignment Problem. Management Science 9(4), 586�
599 (1963). https://doi.org/10.1287/mnsc.9.4.586

18. Lee, Y., Orlin, J.B.: On Very Large Scale Assignment Problems, pp. 206�244.
Springer US, Boston, MA (1994). https://doi.org/10.1007/978-1-4613-3632-7_12

19. Nugent, C., Vollman, T., Ruml, J.: An Experimental Comparison of Techniques
for the Assignment of Facilities to Locations. Operations Research 16(1), 150�173
(1968). https://doi.org/10.1287/opre.16.1.150

20. Peng, J., Mittelmann, H., Li, X.: A new Relaxation Framework for Quadratic As-
signment Problems Based on Matrix Splitting. Mathematical Programming Com-
putation 2(1), 59�77 (2010). https://doi.org/10.1007/s12532-010-0012-6

21. Pollatschek, M., Gershoni, N., Radday, Y.: Optimization of the Typewriter Key-
board by Simulation. Angewandte Mathematik 10 (1976)

22. Povh, J., Rendl, F.: Copositive and Semide�nite Relaxations of the
Quadratic Assignment Problem. Discret. Optim. 6(3), 231�241 (Aug 2009).
https://doi.org/10.1016/j.disopt.2009.01.002

23. Queyranne, M.: Performance Ratio of Polynomial Heuristics for Triangle Inequality
Quadratic Assignment Problems. Operations Research Letters 4(5), 231 � 234
(1986). https://doi.org/10.1016/0167-6377(86)90007-6

24. Sherali, H.D., Adams, W.P.: A Hierarchy of Relaxations and Con-
vex Hull Characterizations for Mixed-Integer Zero�One Program-
ming Problems. Discrete Applied Mathematics 52(1), 83 � 106 (1994).
https://doi.org/http://dx.doi.org/10.1016/0166-218X(92)00190-W

25. Xia, Y., Yuan, Y.X.: A new Linearization Method for Quadratic Assign-
ment Problems. Optimization Methods and Software 21(5), 805�818 (2006).
https://doi.org/10.1080/10556780500273077

26. Zhang, H., Beltran-Royo, C., Ma, L.: Solving the Quadratic Assignment Problem
by Means of General Purpose Mixed Integer Linear Programming Solvers. Annals
OR 207, 261�278 (2013)

27. Zhao, Q., Karisch, S.E., Rendl, F., Wolkowicz, H.: Semide�nite Programming Re-
laxations for the Quadratic Assignment Problem. Journal of Combinatorial Opti-
mization 2(1), 71�109 (1998). https://doi.org/10.1023/A:1009795911987

