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Abstract

We present a system for the annotation and augmen-

tation of mountain photographs. The key issue resides

in the registration of a given photograph with a 3D geo-

referenced terrain model. Typical outdoor images contain

little structural information, particularly mountain scenes

whose aspect changes drastically across seasons and vary-

ing weather conditions. Existing approaches usually fail on

such difficult scenarios. To avoid the burden of manual reg-

istration, we propose a novel automatic technique. Given

only a viewpoint and FOV estimates, the technique is able to

automatically derive the pose of the camera relative to the

geometric terrain model. We make use of silhouette edges,

which are among most reliable features that can be detected

in the targeted situations. Using an edge detection algo-

rithm, our technique then searches for the best match with

silhouette edges rendered using the synthetic model. We de-

velop a robust matching metric allowing us to cope with the

inevitable noise affecting detected edges (e.g. due to clouds,

snow, rocks, forests, or any phenomenon not encoded in the

digital model). Once registered against the model, pho-

tographs can easily be augmented with annotations (e.g.

topographic data, peak names, paths), which would other-

wise imply a tedious fusion process. We further illustrate

various other applications, such as 3D model-assisted im-

age enhancement, or, inversely, texturing of digital models.
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1. Introduction

The internet offers a wealth of audio-visual content

and communities such as Flickr and YouTube make large

amounts of photos and videos publicly available. In many

cases, an observer might wonder what elements are visible

on a certain shot or movie. Especially for natural scenes,

the answer to this question can be difficult because only

few landmarks might be easily recognizable by non experts.

While the information about the camera position is (at least

roughly) known in many cases (photographer’s knowledge

or camera GPS), the camera orientation is usually unknown

(digital compasses have poor accuracy).

The principal requirement is then the accurate alignment

(registration) of a given photograph or video with a 3D geo-

referenced terrain model. Interestingly, such a precise lo-

calization would be useful in many contexts. Services such

as Google StreetView could be extended in an automatic

fashion to natural environments by exploiting user-provided

shots. Further, the photo can be used to texture virtual ter-

rains such as those in Google Earth. Also, annotations, de-

rived from an annotated 3D terrain model, could be added

automatically (highlighting important landmarks) which is

of interest when describing or planning a field trip. Be-

cause of such applications, cameras start being equipped

with GPS in order to automatically track photo locations.

We will focus on a special class of content taken in

mountain regions, and provide a solution to automatically

derive the orientation that was used for a given shot, assum-

ing that the viewpoint location is known accurately enough,

as well as the cameras’s intrinsic parameters (e.g. field-of-

view). It is often complicated or even impossible to access
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these regions with cars or robots, making user-provided im-

ages an interesting way to collect data. Furthermore, users

also benefit from our solution, as it enables them to enhance

(and even augment) their photos with supplementary data.

The input of our approach is a single photograph or a

video and an indication of where it was taken. Our algo-

rithm then automatically finds the view direction by query-

ing the position against a reference terrain model that we

assume to have at disposition. The latter is a smaller con-

straint because satellites can provide very reliable terrain

elevation maps even for less accessible regions. Once the

view is matched, we can transfer information from the ref-

erence model into the photo.

Our main contribution is the robust matching algorithm

to successfully find the view orientation of given photo.

This task is far from trivial and many previous approaches

attempting to match up an image and 3D content can exhibit

high failure rates (Section 2). The reason why our algo-

rithm (Section 3) provides a working solution is that we can

exploit the special nature of terrains. Mountain silhouettes

are relatively invariant under illumination changes, seasonal

influence, and even quality of the camera, therefore we de-

tect these features and make them a major ingredient in our

matching metric (Sections 4, 5, 6). Finally, we illustrate the

robustness and usefulness of our approach with several of

the aforementioned application scenarios (Section 7) before

concluding (Section 8).

2. Previous Work

The problem of matching appears in several areas of re-

search, but proves difficult in most cases. Advances in cam-

era engineering (i.e. digital compass and GPS receivers)

can facilitate the task in the future, but such data is neither

available in most current cameras nor present in video se-

quences. Furthermore, even when available, such informa-

tion is not reliable enough for an accurate pose estimation

and will not be in a long time because the satellite infras-

tructure would need to change drastically to allow the pre-

cision we seek. Usually, existing GPS and compass-based

applications only present distant abstracted depictions (e.g.

Peakfinder (http://peakfinder.ch), Google Skymap) without

considering the actual view content. The same holds for

augmented reality applications, such as the Wikitude World

Browser (http://www.wikitude.org). In a reasonable time

frame only initial estimates of a camera pose, but not the

final fine-tune registration will be available. In the context

we target, orientation must be known accurately to properly

discriminate distant peaks, wereas position accuracy is less

crucial (negligible parallax).

Registration comes in many variants, usually, instead

of matching an entire image, a first step is to restrict the

search to a small set of feature points. Such feature-based

(SIFT [13], SURF [1]) techniques work robustly for im-

age to image registration, but are less usable for image-

to-model registration [23]. Nonetheless, for applications

such as panorama stitching [19], feature-based techniques

work well and currently dominate. Unfortunately, our case

is more difficult because we have to consider very differing

views in a natural scene which exhibits many similar fea-

tures or features that might depend heavily on the time of

the year (e.g. snow borders). This constraint also renders

statistical methods [24], that are widely used in medical im-

age registration, less successful.

The difficulty of this task is also underlined in the photo-

tourism approach [17]. Indoor scenes and landmark shots

are handled automatically, while outdoor scenes have to

be aligned against a digital elevation map and a user has

to manually specify correspondences and similarity trans-

forms to initiate an alignment. Similarly, Deep Photo [9]

requires manual registration and the user has to specify four

or more corresponding pairs of points.

In our experience, even simpler tasks, such as hori-

zon estimation [6], tend to fail in mountain scenes. Sim-

ilarly, advanced segmentation techniques [7, 16] proved

futile. Maybe for these reasons, existing photogramme-

try approaches for mountain imagery, such as GIPFEL

(http://flpsed.org/gipfel.html), strongly rely on user inter-

vention.

Robust orientation estimation is a necessary component

of localization algorithms for autonomous robots. During

missions on moon or mars, it is impossible to rely on stan-

dard GPS techniques, but satellite imagery can deliver a ter-

rain model. Many of these algorithms rely on the horizon

line contour (HLC) which is the outline of the terrain and

specific feature points thereon that are matched with ex-

tracted terrain features [2, 21, 8]. Peaks of the HLC are

often used as features, but might not correspond to actual

peaks in the terrain due to partial occlusion (clouds, fog, or

haze), terrain texture (e.g. snow), or an incorrect sky detec-

tion (see Fig. 3). The latter is very difficult, but particu-

larly crucial for HLC approaches, especially when estimat-

ing visibility between peaks in the query image [8]. Learn-

ing techniques [8, 14] can often lead to successful segmen-

tations, but they depend on the training set and implicitly

assume similar query images (e.g. same daytime). Further-

more, even if successful, the localization of peaks in a photo

is error prone [2] and can lead to a deviation in the estimate.

Hence, sometimes only virtual views are tested [21], or an

accurate compass is supposed [20].

Instead of peaks, using all occluding contours leads to

more robustness, but previous solutions [18] needed an ac-

curate orientation estimate and assumed that the query im-

age allows us to well-detect all occluding contours. As for

the HLC, this property rarely holds because haze, fog or

lighting variations often occlude crucial features. Our ap-

proach does not penalize missing contours, and the detec-
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Figure 1. Overview of the proposed technique.

tion robustness does not suffer from false positives.

Interestingly, despite their negative effect on contour de-

tection, haze and fog potentially encode monocular depth

information [3] The assumptions on reflectance properties

and fog/haze are relatively general and some assumptions

such as a ground plane [3] fail in our context. Consequently,

the resulting depth estimates are usually coarse and proved

insufficient for our purposes.

The area of direct image to model registration is less de-

veloped, and most techniques assume some structural ele-

ments (e.g. straight lines, planes) in the input image [10, 5].

Unfortunately, mountain scenes are highly unstructured

making matching very challenging which lead us to develop

our approach.

3. Problem setup

Given a photograph, our goal is to estimate its pose rel-

atively to an accurate 3D terrain model based on a digital

elevation map (DEM). We assume that the camera’s field of

view is known, as well as an estimate pv of the viewpoint

position (accuracy is discussed in Section 7). Given these

hypotheses, we are looking for the rotation g̃ ∈ SO(3) that
maps the camera frame to the frame of the terrain. The set

of images that can be shot from pv is entirely defined by a

spherical image f centered at pv against which we need to

match the query photo.

We target outdoor scenes that do not allow to rely on

photogrammetry information, as it can vary drastically. In-

stead, we rely on silhouette edges that can be obtained easily

from the terrain model and can be (partially) detected in the

photograph. In general, the detected silhouette map can be

error prone, but we enable a robust silhouette matching by

introducing a novel metric (Section 4).

Because a direct extensive search on SO(3) using this

metric is very costly, we additionally propose a fast prepro-

cess based on spherical cross-correlation (Section 5). It ef-

fectively reduces the search space to a very narrow subset,

to which the robust matching metric is then applied. The

resulting algorithm is outlined in Fig. 1.

3.1. Spherical parameterization

We start by defining some basic notations. The cam-

era frame has its Z axis pointing opposite to the viewing

direction, with X (resp. Y ) axis parallel to the horizon-

tal (resp. vertical) axis of the image. The terrain frame

has its Z axis along the vertical. Rotations of SO(3) are

parameterized with the ZYZ Euler angles, i.e. an element

g ∈ SO(3) is represented by three angles (α, β, γ) so that

g = RZ(α)RY (β)RZ(γ), where RY and RZ are rotations

around axes Y and Z.

Figure 2. Terrain (xT , yT , zT ) and camera (xC , yC , zC ) frames.

The synthetic spherical image of the terrain model from

pv will be denoted f , and the spherical representation of the

photograph will be denoted p. The corresponding silhouette

sets will be denoted EF and EP .

4. Robust silhouette map matching metric

We first address the more costly, but precise fine-

matching. In the targeted situation, i.e. on photographs of

mountainous scenes, results produced by available edge-

detection techniques usually contain inaccuracies which can

be classified as following (see also Fig. 3):

• some of the silhouette edges are not detected;

• some detected edges are noisy;

• many detected edges are not silhouette edges.

The noisy edges prevent us from using traditional edge

matching techniques that often rely on features that are as-

sumed to be present in both images. However the specificity

of our problem allows us to derive a robust matching metric.
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Figure 3. Types of edges detected in mountain scenes: silhouettes encoded (blue) or not encoded in the terrain model (red), noise and

non-silhouette edges (green). Reference (i.e. synthetic) silhouettes (gray) are not always detected.

Our main observation relates to the topology of

silhouette-maps: a feasible silhouette map in general con-

figuration can contain T-junctions, but no crossings. Cross-

ings appear only in singular views, when two distinct sil-

houette edges align (Fig. 4). Consequently, a curve detected

as an edge in the photograph, even if not silhouette, usually

follows a feature of some object and thus never crosses a

silhouette. This only happens if some object, not encoded

in the terrain model, occludes it. The probability for such

events remains low, which will render the method more ro-

bust despite potentially low-quality edges.

Figure 4. Specific topology of terrain silhouettes: separate edges

meet with T-junctions (green), crossings (red) are singular.

To evaluate the likelihood of a given orientation g, the

two edge sets (from photo and model) are overlayed accord-

ing to g. Each edge ep from EP is considered independently

and tested against EF . To account for noise, any potential

matching with an edge ef must be scanned within some tol-

erance εe. When ep enters the εe-neighborhood of an edge

ef ∈ EF , four distinct cases can happen, as depicted by

Fig 5. A threshold ℓfit is used to distinguish the case where

ep is following ef from the case where it crosses it.

Figure 5. The four possible situations for edge-to-edge matching.

For a single edge ep, the matching likelihood value is

computed as follows:

• parts where ep stays outside the εe-neighborhood of

elements of EF count as 0;

• if ep enters the εe-neighborhood of an element ef ∈

EF and exits it after traversing over a length ℓ:

– if it exits on the same side or if ℓ > ℓfit, the

fitting energy ℓafit is added;

– else, a constant penalty cost ccross is subtracted.

The non-linearity implied by an exponent afit > 1 in-

creases robustness: long matching edges will receive more

strength than sets of small disconnected segments of the

same total length. Finally, the matching likelihood for EP

under the candidate rotation g is obtained by summing the

values of each of the (accordingly displaced) individual

edges of EP .

In practice the computation is performed as follows:

first, EF is rasterized with a thickness εe into a sufficiently

high-resolution spherical image; second, the EP edges are

warped according to g, traversed and tested against the ras-

terized EF for potential intersections. The cost of this sim-

ple approach is O(mn), where m is the resolution of the

rasterized EF and n the total number of segments of EP .

Interestingly, the metric relies on all the information

available in the detected edges: even non-silhouette edges

help to find the correct match by preventing actual silhou-

ette edges from crossing them (Fig. 6). Therefore it would

theoretically be possible to find the correct matches even if

all silhouette edges were missed.

Figure 6. Detected non-silhouette edges also help the matching

process: a pose of a reference silhouette (blue) is prevented if it

crosses many detected edges (red).

Although this metric allows robust matching (see Sec-

tion 7), it requires a dense 3D sampling of SO(3), leading to
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prohibitive computation times. We avoid this problem with

an effective search space reduction preprocess, presented

now.

5. Spherical cross-correlation for search space

reduction

To address the problem of the high cost implied by a

dense sampling of SO(3), we move to the Fourier domain.

It is well known that the cross-correlation between two n×

n images can be computed in O(n2 log n) using the fast

fourier transform (FFT). This has recently been extended

to spherical images [11]. The spherical cross-correlation of

two complex-valued spherical functions f and p is defined

on SO(3) as:

∀g ∈ SO(3), f ⋆ p (g) =

∫

S2

f(ω)p(g−1ω)dω,

and can be evaluated in O(n3log(n)) for n2-sampled spher-

ical functions via FFT algorithms on SO(3) [11].
We could directly apply this to our problem by sam-

pling the two silhouette-maps on the sphere and computing

the cross-correlation of these two binary-valued maps (1 on

edges, 0 elsewhere). The main problem here is that it com-

pletely disregards the relative orientation of edges. With

our noise-prone detected edge-maps, the maximum cross-

correlation value would be found where most edges overlap,

which would only work if the detected edge-map contained

all and only the silhouette edges.

5.1. Angular similarity operator

Our goal is to integrate edge orientations in the cross-

correlation. The orientation information can be kept by

rasterizing EF as a 2D real-valued vector field f(ω) =
(fx(ω), fy(ω)), being the tangent vectors of the edges

where they appear, and zero elsewhere (Fig. 8). We define

the angular similarity operator M(f ,p) as follows:

M(f ,p) = ρ2
fρ2

p cos 2(θf − θp),

where (ρf , θf ) and (ρp, θp) are the polar representations of
f and p (see Fig. 7). The value produced by this operator is:

1. positive for (close to) parallel vectors,

2. negative for (close to) orthogonal vectors,

3. zero if one of the vector is zero.

The matching likelihood between two spherical func-

tions f and p can be expressed as:
∫

S2

M(f(ω),p(ω))dω,

so that values of ω where edges closely match are counted

positively while those where edges cross almost perpendic-

ularly are counted negatively. Furthermore, values of ω

where either f or p has no edge do not affect the integral.

1

-1

1

-1

F

P

θθ

CC VCC

Figure 7. Left: M(f ,p) as a function ofp (for a fixed f ). Classical

cross-correlation (CC) disregards orientations, wereas our vector-

field cross-correlation (VCC) properly penalizes crossings.

5.2. Spherical 2D­vector fields cross correlation

In order to be used as a matching likelihood estimation,

this integral would need to be evaluated for any candidate

rotation g, by rotating p accordingly. However, now that p

values are vectors, we need to take the effect of the rotation

into account. Because we defined the transformation of the

camera relative to the world frame, we can show that the

expression of p under a rotation g = (α, β, γ) is:

Rγ+ π
2
.p(g−1w) with Rθ =

[

cos θ − sin θ

sin θ cos θ

]

.

The formula stems from the fact that in the ZYZ euler an-

gles parametrization we are using, the γ angle corresponds

to the rotation of the camera around its viewing direction

(the π
2 offset reflects that a horizontally-looking camera

with a zero γ value is tilted by π
2 ).

Our operator needs to be modified as follows to take the

rotation of p into account:

Mg(f ,p) = ρ2
fρ2

p cos 2(θf − (θp + γ +
π

2
)),

and for a candidate rotation g we then define the matching

likelihood between f and p as follows:

VCC(f ,p)(g) =

∫

S2

Mg(f(ω),p(g−1ω))dω.

5.3. Efficient computation

Using the representation of 2D vectors as complex

numbers, VCC can be expressed as one spherical cross-

correlation operation. Indeed, M(f ,p) can be rewritten as

follows,

M(f ,p) = Re
{

f̂2p̂2
}

,

where

f̂ = ρfeiθf and p̂ = ρpe
iθp .

This leads to the following VCC formulation:

VCC(f, p)(g) = Re

{
∫

S2

f̂2(ω)
(

ei(γ+ π
2
)p̂(g−1ω)

)2
dω

}

= −Re
{

e−i2γ f̂2 ⋆ p̂2 (g)
}

.
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Projection of original image

Rendered panorama with silhouette edges

Edge detector output Thresholded edges Processed orientation vectors

Correct alignment

Figure 8. Detection and processing of edges into orientation vectors (blue frame), used to find the optimal registration (red frame).

In other words, we expressed the computation as a cross-

correlation between f̂2 and p̂2, that is weighted by −e−i2γ

and reduced to its real part. The dominant cost of the match-

ing space reduction is therefore the cross-correlation com-

putation, i.e. O(n3 log n).

6. Implementation details

Terrain model We experimented with two terrain

datasets: 1) coverage of the Alps with 24 meters spaced

samples (http://www.viewfinderpanoramas.org); 2) Na-

tional Elevation Dataset (USGS, http://ned.usgs.gov), cov-

ering the United States at thrice bigger resolution. Exper-

iments showed the importance of considering the Earth’s

curvature when rendering the synthetic panoramas.

Image processing The input photograph is first remapped

to a rectilinearly projected RGB image with known FOV,

using the camera’s intrinsic parameters (read from the at-

tached EXIF data, assisted by a camera database if neces-

sary). We then apply the compass edge detector [15], pa-

rameterized by a radius σ, producing separate maps for edge

strengths (Fig 3) and orientations, that are easily combined

into a vector field of tangent vectors (Fig. 8). This edge de-

tector has the particularity of fully exploiting the color in-

formation, unlike classical ones that handle only grayscale

images. The result is then thresholded (parameter τ ) to keep

only significant edge. The edge map EP (a set of vector-

ized lines) is finally extracted by thinning [12] and vector-

ization [4]. The following parameters were used without

further need of dynamic adaptation: σ = 1, τ = 0.7.

Panorama processing Generating silhouettes from the

3D terrain data is a classical computer graphics problem for

which several options exist. Exploiting the GPU, we ap-

ply raycasting to render the silhouettes into a 2D cylindrical

image, which is then vectorized into an edge map EF .

Efficient matching Because SO(3) has three dimen-

sions, the robust matching metric still needs to be evaluated

on many sampled rotation candidates, even after the search

space reduction process. Nonetheless, each evaluation be-

ing independent, the overall process is highly parallelizable

making a GPU mapping possible that cuts down the com-

putation time from several hours to a few seconds.

7. Results

Our approach was implemented on a Dell T7500 work-

station equipped with two six-core Intel Xeon processors,

one GeForce GTX 480 GPU, and 23GB RAM. With our

simple implementation, the overall process takes around

2 minutes, critical parts being compass edge detection

(around 1 min.), spherical cross-correlation (less than one

minute, with sampling bandwidths of 1024 for S2 and 256

for SO(3)) and final matching metric evaluation (around 20

s. with the GPU implementation). Of a collection contain-

ing 28 photographs randomly chosen from Flickr, 86%were

correctly aligned by our technique (interestingly, VCC was

already maximized at the correct orientation for 25% of the

tested examples). We examined two different mountainous

regions (Alps in Europe and Rocky Mountains in USA) and

found that our approach performs similarly. The matching

is generally very accurate, i.e. below 0.2◦ (Fig. 1, 9 and 10).
Small deviations mostly correspond to imperfections of the

3D model. Experimentally, an accuracy below a few hun-

dred meters for the viewpoint is sufficient.

7.1. Applications

Annotations Our solution enables us to mark a certain

peak in all given photos if it is visible. This is a difficult and

tedious task that often can only be performed by experts.
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Figure 9. An example of annotated panorama image superposed on synthetic panorama.

By testing the visibility of the corresponding mountain in

the 3D terrain model, we can easily decide what part of it

shows in the photograph, and how far it is from the camera

position. Some results are illustrated in Fig. 9 and 10.

Piz Git (3240m)

Bietschhorn (3921m) Mönch (4093m)

Großes Fiescherhorn (4026m)
Lauteraarhorn (4028m)

Großes Grünhorn (4038m)

Aletschhorn (4182m)

Finsteraarhorn (4254m)

Schreckhorn (4062m)

Eiger (3960m)
Jungfrau (4144m)

Aig. d’Argentiere (3864m)

Figure 10. Annotated photo created using the proposed technique.

Augmented reality We can also achieve augmented

views of the mountain landscape. Here, we add paths, land-

marks and other 3D objects into the 3D terrain model. By

transferring only the visible pixels of these models, we can

add them into the photograph. Furthermore, we can relight

them according to the shot. For this, we can either rely on

the time stamp of the photo to deduce the position of the sun

and weather conditions from according databases. Alterna-

tively, we can optimize the sun position and illumination by

comparing the lit terrain model to the captured photo. We

rely on a simple model with a point light (sun) and ambient

occlusion (sky). The optimization process is 1D and con-

verges quickly.

Texture transfer Using our approach, photo collections

can also easily be used to transfer texture information into a

3D mountain model such as those of Google Earth. Having

found the corresponding camera view, it is enough to apply

a projective texture mapping (including a shadow map test)

to derive which part of the scene was actually visible and

could benefit from the image content.

Photo navigation Similarly to photo tourism [17], we can

add the photos into the 3D terrain model to enable an intu-

itive navigation. This allows illustrating or preparing hikes,

even when relying on photos of others.

Image Enhancement and Expressive Rendering Using

the underlying 3D terrain model, we can enhance an ex-

isting image or achieve non-photorealistic effects. E.g.,

we can perform informed model-based image dehazing

(Fig. 11), enhance certain objects, or even mix the view with

geological data (e.g. using USGS metadata).

Video Matching On a frame-by-frame basis, we can also

optimize video sequences. Which is relatively fast because

the search space is reasonably reduced by assuming a slow

displacement. One could also initialize the search with the

frame that gave the highest response in the first search step,

but in practice, we found that unnecessary 1.

8. Conclusions and Future Work

We presented a solution to determine the orientation of

mountain photographs by exploiting available digital ele-

vation data. Although this is a very challenging task, we

showed that our approach delivers a robust and precise re-

sult. The accuracy of our solution enabled various inter-

esting applications that we presented in this paper. Our

technical contributions, such as the camera pose estimation

based on edge-to-silhouette matching could find application

in other contexts of more general matching problems.

In the future, we want to explore other cues (e.g. the at-

mospherical scattering, aerial perspective) that might help

us in addressing more general environments and improving

the edge detection part for these scenarios [22].

1Refer to supplemental movie for video matching examples.
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Figure 11. Application to image contrast enhancement: the original image (left) is modulated by the diffuse lighting component computed

on the synthetic model (particularly profitable for distant mountains, whose contrast is affected by atmospheric effects).
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