Classifier Instance:

Anchor text: groups
Target Entity: Group_\u0028mathematics\u0029
Preceding Context: Bijections are precisely the isomorphisms in the category Set of sets and set functions. However, the bijections are not always the isomorphisms for more complex categories. For example, in the category Gr of
Succeeding Context: , the morphisms must be homomorphisms since they must preserve the group structure, so the isomorphisms are group isomorphisms which are bijective homomorphisms.
Paragraph Title: Bijections and category theory
Source Page: Bijection

Ground Truth Types:

|---wordnet_entity_100001740
|  |---wordnet_artifact_100021939
|  |  |---wordnet_structure_104341686
|  |  |  |---wordnet_structure_104341686_rest
|  |---yagoGeoEntity
|  |  |---wordnet_structure_104341686
|  |  |  |---wordnet_structure_104341686_rest

Predicted Types:

TypeConfidenceDecision
wordnet_artifact_100021939-1.2597890659997677 0
wordnet_event_100029378-1.3593519083282308 0
wordnet_organization_108008335-0.2761758686724142 0
wordnet_person_100007846-4.3223676466271055 0
yagoGeoEntity-0.48931839090918383 0
|---wordnet_entity_100001740
|  |---wordnet_artifact_100021939
|  |---wordnet_event_100029378
|  |---wordnet_organization_108008335
|  |---wordnet_person_100007846
|  |---yagoGeoEntity