
NAGA: Searching and Ranking Knowledge
Gjergji Kasneci Fabian M. Suchanek Georgiana Ifrim Maya Ramanath Gerhard Weikum

Max-Planck Institute for Informatics
Saarbrücken, Germany

{kasneci, suchanek, ifrim, ramanath, weikum}@mpi-sb.mpg.de

Abstract— The Web has the potential to become the world’s
largest knowledge base. In order to unleash this potential,
the wealth of information available on the Web needs to be
extracted and organized. There is a need for new querying
techniques that are simple and yet more expressive than those
provided by standard keyword-based search engines. Searching
for knowledge rather than Web pages needs to consider inherent
semantic structures like entities (person, organization, etc.) and
relationships (isA, locatedIn, etc.).

In this paper, we propose NAGA, a new semantic search
engine. NAGA builds on a knowledge base, which is organized as
a graph with typed edges, and consists of millions of entities and
relationships extracted from Web-based corpora. A graph-based
query language enables the formulation of queries with additional
semantic information. We introduce a novel scoring model,
based on the principles of generative language models, which
formalizes several notions such as confidence, informativeness
and compactness and uses them to rank query results. We
demonstrate NAGA’s superior result quality over state-of-the-art
search engines and question answering systems.

I. INTRODUCTION

The World Wide Web bears the potential of being the
world’s most comprehensive knowledge base, but we are
far from exploiting this potential. The Web includes a wild
mixture of valuable scientific and cultural content, news and
entertainment, community opinions, advertisements, as well
as spam and junk. Unfortunately, all this is coiled up into an
amorphous pile of hyperlinked pages, and keyword-oriented
search engines merely provide best-effort heuristics to find
relevant “needles” in this humongous “haystack”.

As a concrete example, suppose we want to learn about
physicists who were born in the same year as Max Planck.
First, it is close to impossible to formulate this query in terms
of keywords. Second, the answer to this question is probably
distributed across multiple pages, so that no state-of-the-art
search engine will be able to find it, and third, the keywords
“Max Planck” could stand for different world entities (e.g., the
physicist Max Planck, the Max-Planck Society, etc.). In fact,
posing this query to Google (by using the keywords “physicist
born in the same year as Max Planck”) yields only pages
about Max Planck himself, along with pages about the Max-
Planck Society. This example highlights the need for more
explicit, unifying structures for the information of the Web.
A knowledge base which could understand binary predicates,
such as Max Planck isA physicist or Max Planck bornInYear
1858 would go a long way in addressing information needs
such as the above. Combined with an appropriate query
language and ranking strategies, users would be able to express

queries with semantics and retrieve precise information in
return.

There are several research avenues that aim at this direction
in a broader sense. Large-scale information extraction from
semistructured corpora or unstructured text sources has made
great progress in recent years [1], but it is not addressing the
querying of the acquired knowledge. Graph querying such as
RDF-based languages or data mining on biological networks
is a direction that is gaining momentum [17], but does not
consider the potential uncertainty of the data and disregards
the need for a ranking model. Finally, entity-oriented Web
search and other forms of “semantic” information retrieval [8]
provide ranking but have rather simple query models such as
keyword search. Ranked retrieval on XML data like XQuery
Full-Text are more expressive but focus on trees and do not
carry over to richer knowledge graphs. Our work positions
itself at the confluence of these research avenues and creates
added value by combining techniques from all of them and
further extending this synergetic approach by various novel
building blocks.
Our approach: In this paper, we describe NAGA, a new
semantic search engine. NAGA’s data model is a directed,
weighted, labeled multi-graph G = (V,E,LV , LE). V is a
set of nodes, E ⊆ V × V is a multi-set of edges, LV is a set
of node labels and LE is a set of edge labels. Each node v ∈ V
is uniquely assigned a label l(v) ∈ LV and each edge e ∈ E is
assigned a label l(e) ∈ LE . Each node represents an entity and
each edge represents a relationship between two entities. For
example, the edge e = (v, w) with l(e) = bornInYear, l(v) =
Max Planck(physicist), and l(w) = 1858 represents the fact
that the physicist Max Planck was born in 1858. We simply
write Max Planck(physicist) bornInYear 1858.

For each fact f , we maintain all URLs of Web pages in
which f occurred and refer to these pages as the witnesses of
f . Furthermore, each fact f is assigned a confidence value that
depends on the estimated accuracy acc(f, p) with which the
fact f was extracted from a witness p and the trust tr(p) we
have in p. While the accuracy value is usually provided by the
extraction mechanism the trust in a witness can be computed
by any algorithm similar to PageRank. Suppose that a fact f
was extracted from the witnesses p1, . . . , pn. We add f only
once to the knowledge graph and compute its confidence value
as:

c(f) =
1
n

n∑
i=1

acc(f, pi) · tr(pi) (1)



Fig. 1. Excerpt from the knowledge graph

NAGA’s knowledge base currently consists of 16 million
facts extracted from semi-structured Web-based sources such
as Wikipedia and IMDB as well as hand-crafted ontologies
such as WordNet [14]. Additionally, we utilize state-of-the-
art extraction tools such as LEILA [29] in order to extract
facts from unstructured Web-pages containing natural lan-
guage text. As of now, NAGA understands 26 predefined rela-
tionships such as isA, bornInYear, establishedInYear, hasWon-
Prize, locatedIn, politicianOf, means, actedIn, discoveredInYear,
discoveredBy, isCitizenOf, before, after, etc. Figure 1 depicts
an excerpt from the knowledge graph. For more detailed
information on the construction of the knowledge graph please
refer to [30], [29].

In order to query the knowledge-graph, NAGA provides a
graph-based query language. The query language allows the
formulation of queries with semantic information. For exam-
ple, Figure 2 shows how the preceding query about physicists
born in the same year as Max Planck can be formulated
with explicit semantic information (e.g. “Max Planck” is a
physicist). NAGA also allows more complex graph queries
with regular expressions over relationships as edge labels.

Fig. 2. Example query

NAGA returns multiple answers for some queries. In order
to rank these answers, we propose a novel scoring mechanism
based on the principles of generative language models for
document-level information retrieval [25], [31]. We apply
these principles to the specific and unexplored setting of
weighted, labeled graphs. Our scoring model is extensible and
tunable and takes into consideration several intuitive notions
such as compactness, informativeness and confidence of the
results.

Contributions: Our major contributions in this paper are:

1) a novel, expressive yet concise query language for
searching a Web-derived knowledge base,

2) a novel ranking model based on a generative language
model for queries on weighted and labeled graphs,

3) an extensive evaluation of the search-result quality pro-
vided by NAGA, based on user assessments and in com-
parison to state-of-the-art search engines and question
answering systems like Google, Yahoo! Answers, and
START [23].

Furthermore, we demonstrate the superiority of NAGA’s rank-
ing mechanism over comparable mechanisms as used in [6],
[22].

The rest of the paper is organized as follows. Section II
describes the query language with several examples of its use.
In Section III, we present our novel scoring model. Section
IV discusses the query processing algorithms, and Section V
presents the experimental evaluation of our system. We discuss
related work in Section VI before concluding in Section VII.

II. QUERY LANGUAGE

A. Formal Query Model

Given a set S of labels (e.g. relation labels), we denote by
REGEX(S) the set of regular expressions over S. We write
L(r) (⊆ S∗) to denote the language of some r ∈ REGEX(S).

Definition 2.1 (Query): A query is a connected directed
graph Q = (V,E, LV , LE , U), where V is a set of vertices,
E ⊆ V × V is a set of edges, LV is a set of word, individual
and class labels, LE is a set of relation labels, and U is
a set of variables. Each vertex v ∈ V is assigned a label
l(v) ∈ LV ∪ U . Each edge e ∈ E is assigned a label
l(e) ∈ REGEX(LE ) ∪ U∪{connect}. If an edge or vertex is
labeled with a variable, we call that edge or vertex unbound.
We disallow unbound edges between two unbound vertices.

As in the knowledge graph, the vertex labels LV denote
entities and the edge labels LE denote relations. Edges can
be labeled by the special keyword connect or by a regular
expression over LE . We say that an edge is labeled by a simple
relation if its label is contained in LE . In addition, the labels
of nodes and edges can be variables. We call an edge of a
query graph a fact template and denote it by its edge label
and the two node labels. For example, Albert Einstein friendOf
$x is a fact template. Here, $x denotes a variable.

NAGA’s answer model is based on graph matching. Given
a query, NAGA aims to find subgraphs of the knowledge
graph that match the query graph. We say that a vertex v
from a knowledge graph matches a query vertex with label
l, if l(v) = l or if l is a variable. Furthermore, we say that
a query vertex v′ is bound by a vertex v of the knowledge
graph if v matches v′. Before defining matches to our queries,
we first define matches to fact templates.



Definition 2.2 (Matching Path): A matching path for a fact
template x r y is a sequence of edges m1, . . . ,mn from the
knowledge graph, such that the following conditions hold:

• If r is a variable, then n = 1 and the start node of m1

matches x and the end node of m1 matches y.
• If r is a regular expression, then m1, . . . ,mn forms a

directed path and l(m1) . . . l(mn) ∈ L(r). Furthermore,
the start node of m1 matches x and the end node of mn

matches y1.
• If r=connect, then m1, . . . ,mn forms an undirected

path, such that its start node matches x and its end node
matches y.

Given a query q and an answer graph g, we denote the
matching path of a query template qi from q by match(qi, g).
Now we generalize this definition to queries:

Definition 2.3 (Answer Graph): An answer graph to a
query q is a subgraph A of the knowledge graph, such that
(1) for each fact template in q there is a matching path in
A, (2) each fact in A is part of one matching path, (3) each
vertex of q is bound to exactly one vertex of A.

We will occasionally use the label isA as a shorthand for
the regular expression instanceOf subclassOf*. isA connects an
individual via one instanceOf-edge to its immediate class and
by several subclassOf-edges to more general superclasses.

B. Query types

We provide a taxonomy of three query types in ascending
order of expressiveness:
Discovery Queries are queries that supply the user with
pieces of missing information. For example, Figure 2 asks for
physicists who were born in the same year as Max Planck.
NAGA attempts to fill in the variables by finding a subgraph
in the knowledge graph that matches the query and thus binds
the two variables. Note that there are multiple answers to
this query and NAGA returns a ranked list of answers. One
possible answer is shown in Figure 3.

Fig. 3. Answer to query of Figure 2

Formally, a discovery query is a query in which at least one
fact template has an unbound component.
Regular Expression Queries enable users to specify more
flexible matches by allowing regex labels on query edges.
Figure 4 shows two queries, the first of which uses the regular

1For the special case r ∈ LE ⊆REGEX(LE) (in which r is a simple
relation) the match is an edge and n = 1.

expression locatedIn∗ and the shorthand isA to ask Which
rivers are located in Africa? Here, an answer such as Nile
instanceOf river, Nile locatedIn Egypt, Egypt locatedIn Africa
is a valid match. The second query asks for Scientists whose
first name or last name is Liu.

Fig. 4. Regular expression query examples

We say that a regular expression query is a query in which
at least one edge is labeled by a regular expression that is not
a simple relation.
Relatedness Queries discover “broad” connections between
pieces of information. For example, Figure 5 asks the question
How are Margaret Thatcher and Indira Gandhi related? There
are several possible answers to this query – including the
trivial answer that “they are both people”, more informative
answers such as “they were both prime-ministers” as well
as more complex answers such as “Margaret Thatcher and
Indira Gandhi were both prime-ministers of English-speaking
countries (England and India)”.

Fig. 5. Relatedness query example

Formally, a relatedness query is a query in which at least
one edge is labeled by the connect label.

NAGA returns multiple answers for some queries. In order
to rank these answers, we propose a novel scoring mechanism.

III. RANKING ANSWER GRAPHS

A good ranking model for answer graphs should satisfy the
following desiderata:

1) Confident answers (i.e. answers containing facts with
high extraction confidence from authoritative pages)
should be ranked higher.

2) Informative answers should be ranked higher. For ex-
ample, when asking a query Albert Einstein isA $z the
answer Albert Einstein isA physicist should rank higher
than the answer Albert Einstein isA politician, because
Einstein is rather known as a physicist than as a politi-
cian. Similarly, for a query such as $y isA physicist, the
answers about world class physicists should rank higher
than those about hobby physicists.

3) Compact answers should be preferred, i.e. direct connec-
tions rather than loose connections between entities are
preferable. For example, for the query How are Einstein
and Bohr related? the answer about both having won the
Nobel Prize should rank higher than the answer that Tom
Cruise connects Einstein and Bohr by being a vegetarian



like Einstein, and by being born in the year in which
Bohr died.

We propose a novel scoring model that integrates all the above
desiderata in a unified framework. Our approach is inspired
by existing work on language models (LM) for information
retrieval (IR) on document collections [31], [19], but it is
adapted and extended to the new domain of knowledge graphs.
In this setting, the basic units are not words, but facts or fact
templates. Our graphs and queries can be seen as sets of facts
or fact templates respectively. A candidate result graph in our
setting corresponds to a document in the standard IR setting.

The language model we propose is much more challenging
than the traditional language models for two reasons:

1) By considering facts and fact templates as IR units
rather than words-in-documents, our queries include
both bound and unbound arguments - a situation that
is very different from what we encounter in multi-term
queries on documents.

2) Our corpus, the knowledge graph, is virtually free
of redundancy (each fact occurs only once), unlike
a document-level corpus. This makes reasoning about
background models and idf-style aspects [31] more
subtle and difficult.

A. Language Model

In line with IR models [19], [31] we assume that a query q is
generated by a probabilistic model based on a candidate result
graph g. Given a query q = q1q2 · · · qn and a candidate answer
g = g1g2 · · · gn, where each qi is a fact template and each gi is
a fact, we want to estimate the conditional probability P (g|q),
i.e. the probability that g generated the observed q [31].

After applying Bayes formula and dropping a graph-
independent constant (since we are only interested in ranking
graphs), we have P (g|q) ∼ P (q|g)P (g) where P (g) can
reflect a prior belief that g is relevant to any query. P (q|g)
is the query likelihood given the graph g which captures how
well the graph fits the particular query q. In our setting we
assume P (g) to be uniform and thus we are interested in
computing P (q|g). In the spirit of IR models [31], we assume
probabilistic independence between the query’s fact templates
which results in P (q|g) =

∏n
i=1 P (qi|g). Our intuition behind

the independence assumption is based on the independent
extraction of facts in the construction phase of NAGA’s
knowledge base (see [30]). Furthermore, the independence
assumption between data items is used as a standard technique
to avoid high computational complexity in high-dimensional
data settings (“the curse of dimensionality”). A well known
example for such a setting is the vector space model for
document retrieval where each document is represented as a
vector and each dimension corresponds to a separate term.
Analogously, in our setting the dimensions would be spanned
by our facts.

Next, we design a tf · idf style probabilistic mixture model
for query fact templates. We follow classical IR literature [19]
but develop a new scoring model suited for our setting. We

define the likelihood of a query fact given an answer graph as
a mixture of two distributions, P̃ (qi|g) and P̃ (qi) as follows:

P (qi|g) = α · P̃ (qi|g) + (1− α) · P̃ (qi), 0 ≤ α ≤ 1 (2)

P̃ (qi|g) is the probability of drawing qi randomly from an
answer graph, P̃ (qi) is the probability of drawing qi randomly
from the total knowledge graph and α is either automatically
learned (via EM iterations [19]) or set to an empirically cal-
ibrated global value. [19], [31] show the connection between
this style of probabilistic models and the popular tf · idf
heuristics.

As mentioned before, we want to capture confidence, infor-
mativeness, and compactness. We first describe the confidence
and informativeness components and then explain how our
model automatically deals with compactness. We describe
P̃ (qi|g) by a mixture model which puts different weights on
confidence and informativeness. This is close in spirit to linear
interpolation models used for smoothing [31]. β is empirically
calibrated as analyzed in our evaluation section.

P̃ (qi|g) = β · Pconf (qi|g) + (1− β) · Pinfo(qi|g) (3)
0 ≤ β ≤ 1

Note that the confidence and the informativeness are indeed
independent criteria. For example, we can be very confident
that Albert Einstein was both a physicist and a politician, but
the former fact is more informative than the latter, because
Einstein was a physicist to a larger extent than he was a
politician.

1) Estimating Confidence: The maximum likelihood esti-
mator for Pconf (qi|g) is:

Pconf (qi|g) =
∏

f∈match(qi,g)

P (f holds) (4)

where P (f holds) is estimated by c(f) (see Formula (1)). If
qi is labeled by a simple relation name, then match(qi, g)
contains just one fact and Pconf (qi|g) is the confidence of that
fact. If qi is labeled with connect or with a regular expression
over relations, then match(qi, g) contains the sequence of
facts that together match qi. The likelihood of that sequence
being true is the product of the confidences of the single facts,
assuming that the facts are independent.

2) Estimating Informativeness: The informativeness of a
query template qi given the answer graph g depends on the
informativeness of each matching fact in g:

Pinfo(qi|g) =
∏

f ∈ match(qi,g)

Pfinfo(f |qi) (5)

Note that the same fact f may have different informativeness
values, depending on the query formulation. For example,
the fact Bob Unknown instanceOf physicist would be less
informative if the query asked for (famous) physicists ($x in-
stanceOf physicist), but could be very informative if the query
asked about the occupation of Bob Unknown (Bob Unknown
instanceOf $x). Thus the informativeness of the fact f depends
on the unbound arguments of the query template qi.



Let f = (x, r, y) be an observation drawn from the joint
distribution of three random variables X, R and Y . X and
Y take values from the set of knowledge graph nodes and R
takes values from the set of edges (e.g. relations). Given a
query template qi = (x′, r′, y′), if f = (x, r, y) is a match for
qi, we define the informativeness of f as follows:

Pfinfo(f |qi) =



P (x|r, y), if x′ unbound in qi

P (y|r, x), if y′ unbound in qi

P (r|x, y), if r′ unbound in qi

P (x, y|r), if x′, y′ unbound in qi

P (x, r|y), if x′, r′ unbound in qi

P (r, y|x), if r′, y′ unbound in qi

P (x, r, y), else

(6)

We show how to estimate these probabilities by the example
of P (x|r, y). P (x|r, y) can be written as follows:

P (x|r, y) =
P (x, r, y)
P (r, y)

=
P (x, r, y)∑
x′ P (x′, r, y)

(7)

We estimate P (x, r, y) using the number of witness pages for
the fact (x, r, y) 2:

P (x, r, y) ≈ |W (x, r, y)|∑
x′,r′,y′ |W (x′, r′, y′)|

(8)

To see why this formulation captures the intuitive understand-
ing of informativeness, consider some examples. Let q be the
query q= Albert Einstein instanceOf $x, which consists of one
fact template. Let f be a possible answer f= Albert Einstein
instanceOf physicist. Here, the informativeness of f measures
how often Einstein is mentioned as a physicist as compared to
how often he is mentioned with some other instanceOf fact.
Thus, f= Albert Einstein instanceOf physicist will rank higher
than f ′ = Albert Einstein instanceOf politician. In this case,
informativeness measures the degree to which Einstein was a
physicist.

Now consider the query q = $x instanceOf physicist and
consider again the answer f = Albert Einstein instanceOf
physicist. The informativeness of f will compute how often
Einstein is mentioned as a physicist compared to how often
other people are mentioned as physicists. Since Einstein is
an important individual among the physicists, Albert Einstein
instanceOf physicist will rank higher than Bob Unknown in-
stanceOf physicist. In this case, informativeness measures the
importance of Einstein in the world of physicists.

More examples could be: When asking for prizes that
Einstein won, our informativeness will favor the prizes he is
most known for. When asking for people born in some year,
informativeness favors famous people. When asking for the
relationship between two individuals, informativeness favors
the most prominent relation between them.

For now the number of witnesses for each fact in our
knowledge graph is not statistically significant, because our
facts are extracted only from a limited number of Web-based
corpora, and many facts appear only on one page. For this

2The witnesses could also be weighted by their authority, e.g. Page Rank.

reason we approximated the P (x, r, y) values by a heuristic.
We transformed the facts into keyword queries and used a
search engine to retrieve the number of pages in the Web that
contain the corresponding keywords. For example, to estimate
P (Albert Einstein|instanceOf, physicist), we formulated the
query “Albert Einstein” + “physicist” and retrieved the number
of hits for this query. We retrieved the number of hits for
the query “physicist” as well and estimated the probability as
follows:

P (Albert Einstein|instanceOf, physicist) (9)
∼ P (Albert Einstein|physicist) (10)

=
P (Albert Einstein, physicist)

P (physicist)
(11)

∼ #hits(Albert Einstein physicist)
#hits(physicist)

(12)

Note that using the graph structure (e.g. in-degree of nodes)
as an alternative for computing informativeness will lead to
arbitrary ranking behavior, e.g. for the query Albert Einstein
instanceOf $x, the answer Albert Einstein instanceOf politi-
cian will be ranked higher than the answer Albert Einstein
instanceOf physicist just because there are more instances of
politicians worldwide than of physicists (see also comparison
to BANKS scoring [6] in Section V).

In summary, confidence and informativeness are two com-
plementary components of our model. The confidence ex-
presses how certain we are about a specific fact – independent
of the query and independent of how popular the fact is on the
Web. The informativeness captures how useful the fact is for
a given query. This depends also on how visible the fact is on
the Web. In this spirit, our definition of informativeness differs
from the information theoretic one, which would consider
less frequent facts more informative. The latter is captured
by our background model (see III-A.4). For the estimation
of Pfinfo(f |qi) we rely on asymmetric measures (see (6),
(11), (12)), which reflect the position of variables in the
fact templates. Therefore, symmetric information theoretic
measures, such as PMI (pointwise mutual information), would
not be an adequate choice for the estimation of Pfinfo(f |qi).

3) Estimating Compactness: The compactness of answers
is implicitly captured by their likelihood given the query. This
is because the likelihood of an answer graph is the product
over the probabilities of its component facts. Therefore, the
more facts in an answer graph the lower its likelihood and
thus its compactness.

For example, for the query Margaret Thatcher connect In-
dra Gandhi the answer graph stating that they are both prime-
ministers, is more compact than the answer that they are both
prime-ministers of English-speaking countries.

4) The Background Model: We turn to estimating P̃ (qi),
which plays the role of giving different weights to different
fact templates in the query. This is similar in spirit to the idf-
style weights for weighting different query terms in traditional
LMs. For a single-term query the idf part would just be a
constant shift or scaling, which does not influence the ranking.



Algorithm 1 Query Processing Algorithm
1: Function: queryResults(Q)
2: Input: A query graph Q = (VQ, EQ, LEQ , LVQ , U)
3: Output: A set of answer graphs
4: normalize Q into Q′ = (VQ′ , EQ′ , LEQ′ , LVQ′ , U)

5: return templateResults(Q′, EQ′ )

1: Function: templateResults(C,E)
2: Input: A query graph C = (VC , EC , LEC , LVC , U)
3: Input: A set of fact templates E
4: Output: A set of answer graphs
5: If E = ∅, return {C}
6: Results = ∅
7: Pick a fact template e ∈ E
8: for all matches e′ of e in the knowledge graph do
9: re′=templateResults((VC ,EC − e + e′,LEC ,LVC ,U),E − e)

10: If re′ 6= ∅, Result = Result + re′

11: end for
12: return Results

But for multi-term queries, the idf weights give different
importance to different query terms. For example, consider the
query with two fact templates q1 = $y bornIn Ulm and q2 =
$y isA scientist. If matches to this query are only partial, e.g.
answers in which only one of the fact templates is matched are
allowed, then the more important template should get higher
weight. Traditionally, the more important condition is the more
specific one – the one that is expected to have fewer matches,
i.e., higher idf . If there are many people born in Ulm, but there
are only few scientists overall, this suggests giving a higher
weight to q2. By counting edges of the form $x bornIn Ulm
and $x isA scientist in the overall corpus (knowledge graph),
we get corresponding frequency (an estimate for P̃ (qi) ) and
thus inverse frequency weights, in the idf spirit. This type of
background model is heavily used in standard IR [19], [31].

IV. QUERY PROCESSING

NAGA stores the facts of the knowledge graph into a
database table with the schema Facts(ID, RELATION, ENTITY1,
ENTITY2, CONFIDENCE). A high-level overview of NAGA’s
query processing algorithm is shown in Algorithm 13. We first
pre-process the given query into a normalized form (line 4,
Function queryResults) by applying the following rewrit-
ings: First, because we allow users to use words for referring
to entities, we add an additional edge labeled with means for
each bound vertex, e.g. the query Einstein hasWonPrize $x
becomes “Einstein” means $Einstein; $Einstein hasWonPrize
$x. Second, we translate the pseudo-relation isA to its explicit
form instanceOf subclassOf*, e.g. the query $x isA $y becomes
$x instanceOf subclassOf* $y. This allows the user to ask for
instances of classes without the need to know about regular
expressions.

The main function of the query processing algorithm is
templateResults. It is given a preprocessed query graph
and a list of templates to be processed. Initially, the templates
are edges of the query graph. Some edge is picked (line 7)

3Given a set of edges E and a match e, we write E + e for E ∪ {e′ : e′

is an edge in e}. Note that e may be a sequence of edges.

and all possible matches of this edge in the query graph are
identified. For each possible match, we construct a refined
query graph by replacing the fact template by the match. Then,
the function is called recursively with the refined query graph.
Once no more query fact templates need to be processed, the
refined query graph constitutes a result.

We identify matches for templates as follows. If the label of
the edge in the fact template is a simple relation or a variable,
we translate the template directly to an SQL statement. This
applies to templates like “Einstein” means $z, “Einstein” $r
Ulm, or $x invented $z, which can be translated into simple
SELECT statements over the Facts table.

If the edge of the template is labeled with a regular
expression over relations, we construct a (non-deterministic)
automaton for the regular expression. We identify one vertex
v0 of the edge that is already bound. If v0 is not the start vertex
of the edge, but the target vertex, we invert the automaton.
Now, we start a breadth-first-search in the knowledge graph
from v0. The visited vertices of the search are stored in a
queue. To each vertex in the queue, we attach (1) a set of states
of the automaton and (2) a predecessor vertex. Initially, the
queue contains just v0 with the initial states of the automaton
and no predecessor node attached. Whenever we poll a vertex
v from the queue, we examine the automaton states attached
to v. For each state s, we find all possible vertices v′ in the
knowledge graph that occur in edges e = (v, v′) with l(e) = r,
where r is the relation label of the regular expression that is
being read by the automaton. To each such v′, we attach v
as a predecessor vertex and the successor states of s as its
states. When one of the successor states of s is an exit state
of the automaton, we obtain a matching path for the regular
expression edge by following the predecessor vertices of v′.
Then, v′ is enqueued. This process continues until the queue is
empty. This gives us a set of matching paths for the template.

In case the template is labeled with connect, we search a
chain of facts from the first template argument to the second.
We implement it by two breadth-first-searches, which start
from the two vertices and grow until they meet. This process
can deliver multiple paths between the arguments, if desired.
This gives us a set of matching paths for the connect template.

We also incorporate some query optimizations: First, fact
templates in which the edge as well as both vertices are not
labeled by a variable are processed separately, so that they
do not need to be computed in each recursive call. Second,
we coalesce subsequent non-regular expression edges to one
single SQL statement whenever possible. Furthermore, certain
trivial relations (such as e.g. smallerThan for numbers or
before and after for dates) are not stored in the database, but
are computed at query time.

V. EVALUATION

In this section we evaluate NAGA’s search and ranking be-
havior. First, we discuss the influence of the model parameters
on the ranking desiderata, i.e. confidence, informativeness, and
compactness. Then, we present an extensive user study that
compares NAGA’s performance to the performance of Google,



Yahoo! Answers, and START4 [23]. Finally, we compare
NAGA’s scoring mechanism to the one of BANKS [6].

A. Influence of ranking parameters

As discussed in Section III, the parameter α can be used
to give different weights to different fact templates of a query
by means of the background model P̃ (qi). For our study we
focus on exact matches. Thus we set α = 1.

On the other hand, the parameter β can be used to for-
mulate a more flexible scoring, in which either confidence
or informativeness is given a higher emphasis. For example,
if we search for a drug that heals malaria, we would want
to emphasize confidence more than informativeness, i.e. we
would not be interested in famous drugs for malaria, but in
drugs that have high associated confidence for healing the
disease. If we want to find out new meanings associated with
a word, we may emphasize the informativeness more than the
confidence. This would promote information that appears in
many possibly low confidence sources, e.g. revealing that the
word Kleenex (which is a trademark) is used by many people
with the meaning of tissues. For our experiments we set β to
the balanced value 0.5 giving equal weight to informativeness
and confidence.

B. User Study

a) Benchmarks: We evaluated NAGA on three sets of
queries. Sample queries from each of these sets are shown in
Table I.

• TREC 2005 and TREC 2006 provide standard bench-
marks for question answering systems. Out of this set,
we determined the questions that can be expressed by the
current set of NAGA relations. We obtained a set of 55
questions (query set TREC). Note that although NAGA
knows the relations used in the questions, the knowledge
graph does not necessarily have the data instances to
answer them.

• The work on SphereSearch [15] provides a set of 50
natural language questions for the evaluation of a search
engine. Again, we determined the 12 questions that can be
expressed in NAGA relations (query set SphereSearch).

• Since, to the best of our knowledge, we are the first to
utilize regular expressions over relations and relatedness
queries, we had to provide these queries by ourselves. We
constructed 18 corresponding natural language questions
(query set OWN).

b) Competitors: Given that the established search and
question answering (QA) systems use different corpora, data
models, query languages and rankings, the evaluation be-
comes very difficult. Nevertheless, in our study we try to
cover a broad spectrum of retrieval systems and techniques,
by comparing ourselves to state-of-the-art systems: Google
(search engine), Yahoo! Answers and START (QA systems).
Furthermore, in order to have a homogeneous evaluation of

4http://start.csail.mit.edu/

Benchmark Question with NAGA translation
TREC When was Shakespeare born?

Shakespeare bornInYear $x
In what country is Luxor?

Luxor locatedIn $x
$x isA country

SphereSearch In which movies did a governor act?
$y isA governor
$y actedIn $z
$z isA movie

What was discovered in the 20th century?
$x discoveredInYear $y
$y after 1900
$y before 2000

OWN Who produced or directed the movie
”Around the World in 80 Days”?

$x produced|directed
Around the World in 80 Days

What do Albert Einstein and Niels Bohr
have in common?
Albert Einstein connect Niels Bohr

TABLE I
SAMPLE QUERIES

NAGA’s scoring mechanism we compare it to the one used
by an established graph-based search engine, BANKS [6].

It is clear that these systems are considerably different.
Google is designed to find Web pages, not to answer questions.
Still, it is a robust competitor, because of its large amount of
indexed Web pages. It is also tuned to answer specific types
of questions (e.g. When was Einstein born?) directly by its
built-in QA system. Yahoo! Answers has its own corpus of
questions and corresponding answers (provided by humans).
When given a question, it first matches it to a question in
its corpus and retrieves the answer. START is an established
QA system, which understands natural language questions
and can give answers based on information gathered from
the Web. BANKS performs keyword search over the graph-
oriented representation of a database. The nodes of the graph
represent tuples from database tables and the edges represent
foreign-key relationships between tuples. The answers to a
query are graphs containing the query keywords. To evaluate
our scoring function explicitly, we compare the NAGA scoring
mechanism to the one proposed for BANKS. For this purpose,
we integrated the BANKS scoring function into the NAGA
engine and compared it to NAGA’s own scoring mechanism.

All the questions were posed to Google, Yahoo! Answers,
START and NAGA (with NAGA scoring and BANKS scoring,
respectively). While for Google, Yahoo! Answers and START
the queries were posed in their original natural language form,
for NAGA the queries were posed in their graph form (see
Table 1). This type of comparison is influenced by several as-
pects: First, the results returned by a system in this evaluation
depends on how precisely the questions can be formulated.



Benchmark #Q #A Measure Google Yahoo! Answers START BANKS scoring NAGA
TREC 55 1098 NDCG 75.88% ± 6.28% 26.15% ± 6.46% 75.38% ± 5.31% 87.93% ± 3.95% 92.75% ± 3.11%

P@1 67.81% ± 6.87% 17.20% ± 5.52% 73.23% ± 5.46% 69.54% ± 5.63% 84.40% ± 4.42%
SphereSearch 12 343 NDCG 38.22% ± 11.22% 17.20% ± 8.54% 2.87% ± 2.87% 88.82% ± 6.80% 91.01% ± 6.07%

P@1 19.38% ± 8.98% 6.15% ± 5.01% 2.87% ± 2.87% 84.28% ± 8.00% 84.94% ± 7.84%
OWN 18 418 NDCG 54.09% ± 11.29% 17.98% ± 8.54% 13.35% ± 6.92% 85.59% ± 6.75% 91.33% ± 5.28%

P@1 27.95% ± 10.10% 6.57% ± 5.13% 13.57% ± 6.97% 76.54% ± 8.25% 86.56% ± 6.54%

#Q – Number of questions
#A – Total number of assessments for all questions

TABLE II
RESULTS

Second, it depends on the size of the knowledge base that the
system uses. Third, the comparison measures the quality of the
ranking of a system. Clearly, NAGA has an advantage over
Google, Yahoo! Answers and START, because of its graph-
based query language. At the same time, Google and Yahoo!
Answers have a massive advantage over NAGA, because
they are commercially operated systems that can search the
whole Web (Google) or have a huge corpus of several million
predefined questions (Yahoo! Answers). START is explicitly
designed to answer questions.

c) Measurements: For each question, the top-ten results
of all systems were shown to human judges. On average, every
result was assessed by 20 human judges. For each result of
each system, the judges had to decide on a scale from 2 to
0, whether the result is highly relevant (2), correct but less
relevant (1), or irrelevant (0).

NAGA answers queries by finding matches in the knowl-
edge graph. For example, for a query such as Albert Einstein
bornInYear $x, NAGA returns only the result Albert Einstein
bornInYear 1879. Hence the direct comparison to the other sys-
tems in terms of the well known precision-at-top-10 (P@10)
measure would be misleading. Therefore we chose a measure
that is not dependent on the number of results returned by the
system for a given query, and which additionally can exploit
the rank and the weight of relevant results in the result list.
The Normalized Discounted Cumulative Gain (NDCG) was
introduced by [21] and is intensively used in IR benchmarking
(e.g. TREC). It computes the cumulative gain the user obtains
by examining the retrieval results up to a fixed rank position.
The NDCG rewards result lists in which highly relevant results
are ranked higher than marginally relevant ones. We average
the NDCG for one query over all user evaluations for that
query and average these values over all queries.

Furthermore, we provide the precision at one (P@1) in
order to measure how satisfied the user was on average with
the first answer of the search engine. P@1 is the number of
times that a search engine provided a relevant result in the first
position of the ranking, weighted by the relevance score (0 to
2) and normalized. To be sure that our findings are statistically
significant, we compute the Wilson confidence interval for the
estimates of NDCG and P@1. We report confidence intervals
for a confidence level of α = 95%.

d) Results: Table II shows the results of our evaluation.
For the TREC query set, Google performs very well. The first
hit in its result ranking is a satisfactory answer. The reason
for this is that the TREC questions are mostly of a very basic
nature (see Table 1) and Google can answer a major part of
them directly by its highly precise built-in question answering
system. In contrast, Yahoo! Answers performs less well. Very
often, it retrieves answers to questions that have only the stop-
words in common with the question posed. In many cases, it
does not deliver an answer at all. START performs much better
than Yahoo! Answers. Whenever it has the appropriate data in
its knowledge base, its answers are highly satisfactory.

The SphereSearch questions are of a more sophisticated
nature. They ask for a non-trivial combination of different
pieces of information. Consequently, both Google and Yahoo!
Answers perform worse than for the TREC questions. START
performs poorly here, often because it does not understand
the question (it tries to parse proper names as English words)
and often because it does not know the answer. NAGA, in
contrast, excels on these questions, because it makes full use
of its graph-based query language.

For OWN queries, Google again performs quite well. This
is because the questions mostly ask for a broad relationship
between two individuals. Google can answer these questions
by retrieving Web documents that contain the two keywords. In
most cases, these answers were satisfactory. Yahoo! Answers
had again difficulties. START could not answer questions
that ask for the broad relationship between two entities (no
matter how we phrased the question) and therefore often failed.
NAGA delivers good results for the majority of questions and
clearly outperforms Google.

As shown in Table II (columns 8, 9) NAGA’s scoring
mechanism outperforms the scoring mechanism of BANKS.
The BANKS scoring function is given by an interpolation of
the average in-degree of nodes and the average edge weights
in a result graph (see [6]). Hence, it relies only on the graph
structure, which is not enough to capture informativeness.
When asked for (famous) politicians, the BANKS scoring
returns Albert Einstein as the first result. For the query
Albert Einstein isA $x the BANKS scoring returns person as
the first result. This is because of the high in-degree of the
nodes representing the entities Albert Einstein and person in
the knowledge graph. NAGA’s scoring mechanism, instead,



is a powerful combination of graph structure properties and
fact witness estimations. When asked for (famous) politicians,
NAGA’s scoring returns Barack Obama as the first result,
while for the query Albert Einstein isA $x, the first answer
is physicist.

VI. RELATED WORK

The most prominent works along similar lines are probably
Libra [27], EntitySearch [9], and ExDBMS [7], all of which
also operate on relations extracted from Web data. Libra
focuses on entities and their attributes, using a novel record-
level language model. However, it does not address general
relations between different entities, and its query model is
keyword-centric. EntitySearch [9] facilitates search that can
combine keywords and structured attributes in a convenient
manner, and it has an elaborate ranking model for result
entities. However, it does not address typed relations between
entities and SPARQL-style path expressions on knowledge
graphs, and its ranking model is very different from ours.
ExDBMS [7] uses powerful IE tools to capture entities and
typed relations, and its query model supports this full suite
as well. It uses a probabilistic form of Datalog for search
[11]. In contrast, NAGA uses a graph-based search paradigm
that is more expressive by supporting regular expressions on
paths and a very general form of relatedness queries, with
joins along edges as a special case. Furthermore, NAGA
extends the above approaches by considering informativeness
and confidence levels of imperfect extraction, at query time,
by means of an elaborate ranking method for complex queries
based on principles of statistical language models, the latter
being one of the cornerstones of modern information retrieval
(IR) for text documents [25], [31].

Our query language is akin to the RDF query language
SPARQL and XML query languages such as XPath or XQuery.
However, all these languages disregard the issue of uncertainty.
More related to our work is the research on XML IR for ranked
retrieval (see [3] and the references given there). This line of
work, however, does not consider graph structures that reflect
Web connectivity or arbitrary relations that could be viewed as
typed edges in a graph. SPARQL-style languages are geared
for graphs (see, e.g., [4] for recent, powerful models), but do
not consider uncertainty and treat ranking as a second-class
citizen.

Deep-Web search, vertical search and entity search on the
Web, and semantic desktop search [8], [9], [12], [13], [27],
[26] enhance keyword-based querying by typed attributes,
but none of these approaches is sufficiently complete for
effectively searching a richly structured knowledge base.

Finally, there is prior work on graph-oriented text search in
various forms. Schema-oblivious keyword search in relational
databases operates on a graph that is created by the foreign-
key relationships in the database. BANKS [6], DBXplorer
[2], and DISCOVER [20] are the most prominent systems of
this kind. More recent work along these lines has focused
on efficiency issues [5], [18], [22], [24], [28] and did not
explore richer functionality. These kinds of data graphs can

be generalized into networks of entities and relationships, and
similar graph structures also arise when considering XML
data with XLinks and other cross-references within and across
document boundaries [16], [10]. However, these methods
operate on text nodes in a graph, but without using explicit
relation types in advanced queries. In contrast, NAGA has
a notion of typed edges that correspond to binary relations
between entities, and can utilize this additional knowledge for
more precise querying along with a principled and yet general
ranking model that can be applied to any kind of labeled,
weighted data graph.

VII. CONCLUSIONS

In this paper, we presented the NAGA search engine,
which facilitates advanced querying for knowledge rather than
merely retrieving Web pages. NAGA’s large knowledge base,
organized as a directed graph, consists of millions of facts
extracted from Web-based corpora. We introduced a graph-
based query language with several distinctive features. We
proposed a novel scoring mechanism based on generative
language models, incorporating the notions of confidence,
informativeness, and compactness in a principled manner.
We compared our system to state-of-the-art retrieval systems
by conducting a comprehensive user study on a variety of
simple and complex queries. The results demonstrated that
NAGA returns answers which are superior in quality to all
competitors.

Our future work will aim to further increase the scale and
scope of our knowledge base by incorporating more sources.
A second aspect is query-processing efficiency. Although, for
almost all queries, the first result is returned in less then a
second, the efficiency for relatedness queries should be im-
proved. We plan to adapt recent algorithms for keyword search
in relational graphs for this purpose. NAGA is available online
at http://www.mpii.mpg.de/˜kasneci/naga.

REFERENCES

[1] E. Agichtein, S. Sarawagi. Scalable information extraction and integra-
tion. Tutorial. KDD, 2006.

[2] S. Agrawal, S. Chaudhuri, G. Das. DBXplorer: A system for keyword-
based search over relational databases. ICDE, 2002.

[3] S. Amer-Yahia, J. Shanmugasundaram. XML full-text search: Chal-
lenges and opportunities. Tutorial. VLDB, 2005.

[4] K. Anyanwu, A. Maduko, A. Sheth. SPAR2QL: Towards support for
subgraph extraction queries in rdf databases. WWW, 2007.

[5] B. Ding, J. Yu, S. Wang, L. Qin, X. Zhang, X. Lin Finding top-k
min-cost connected trees in databases. ICDE, 2007.

[6] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, S. Sudarshan.
Keyword searching and browsing in databases using BANKS. ICDE,
2002.

[7] M. Cafarella, C. Re, D. Suciu, O. Etzioni. Structured querying of web
text data: A technical challenge. CIDR, 2007.

[8] S. Chakrabarti. Dynamic personalized pagerank in entity-relation graphs.
WWW, 2007.

[9] T. Cheng, K. C.-C. Chang. Entity search engine: Towards agile best-
effort information integration over the web. CIDR, 2007.



[10] S. Cohen, Y. Kanza, B. Kimelfeld, Y. Sagiv. Interconnection semantics
for keyword search in XML. CIKM, 2005.

[11] N. Dalvi, D. Suciu. Efficient query evaluation on probabilistic databases.
VLDB, 2004.

[12] J.-P. Dittrich, M. A. V. Salles. iDM: A unified and versatile data model
for personal dataspace management. VLDB, 2006.

[13] X. Dong, A. Y. Halevy. A platform for personal information management
and integration. CIDR, 2005.

[14] C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT
Press, 1998.

[15] J. Graupmann. The SphereSearch Engine for Graph-based Search
on heterogeneous semi-structured data. PhD thesis, Universität des
Saarlandes, 2006.

[16] J. Graupmann, R. Schenkel, G. Weikum. The Spheresearch engine for
unified ranked retrieval of heterogeneous XML and web documents.
VLDB, 2005.

[17] J. Han, X. Yan, P. Yu. Mining and searching graphs and structures,
tutorial. KDD, 2006.

[18] H. He, H. Wang, J. Yang, P. Yu. BLINKS: Ranked keyword searches
on graphs. SIGMOD, 2007.

[19] D. Hiemstra. A probabilistic justification for using tf.idf term weighting
in information retrieval. Int. J. on Digital Libraries 3(2), 2000.

[20] V. Hristidis, Y. Papakonstantinou. DISCOVER: Keyword search in
relational databases. VLDB, 2002.

[21] K. Jarvelin, J. Kekalainen. IR evaluation methods for retrieving highly
relevant documents. ACM Press, 2000.

[22] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai,
H. Karambelkar. Bidirectional expansion for keyword search on graph
databases. VLDB, 2005.

[23] B. Katz, G. Marton, G. Borchardt, A. Brownell, S. Felshin, D. Loreto,
J. Rosenberg, B. Lu, F. Mora, S. Stiller, O. Uzuner, A. Wilcox. External
Knowledge Sources for Question Answering. TREC, 2005.

[24] B. Kimelfeld, Y. Sagiv. Finding and approximating top-k answers in
keyword proximity search. PODS, 2006.

[25] X. Liu and W. Croft. Statistical language modeling for information
retrieval. Annual Review of Information Science and Technology 39,
2004.

[26] J. Madhavan, S. Cohen, X. Dong, A. Halevy, S. Jeffery, D. Ko, C. Yu.
Navigating the seas of structured web data. CIDR, 2007.

[27] Z. Nie, Y. Ma, S. Shi, J. Wen, W. Ma Web object retrieval. WWW,
2007.

[28] M. Sayyadan, H. LeKhac, A. Doan, L. Gravano. Efficient keyword
search across heterogeneous relational databases. ICDE, 2007.

[29] F. M. Suchanek, G. Ifrim, G. Weikum. Combining Linguistic and
Statistical Analysis to Extract Relations from Web Documents. KDD,
2006.

[30] F. M. Suchanek, G. Kasneci, G. Weikum. Yago: A Core of Semantic
Knowledge. WWW, 2007.

[31] C. Zhai, J. Lafferty. A risk minimization framework for information
retrieval. Information Proc. and Management 42, 2006.


