
STAR: Steiner Tree Approximation in Relationship Graphs

GjergjiKasneci

Joint Work with:

Maya Ramanath, Mauro Sozio,

Fabian M. Suchanek, and Gerhard Weikum

Max-Planck Institute for Informatics
Saarbrücken, Germany

ICDE2009

Relationship Graphs

ÅSimple, flexible, explicitway to represent knowledge

ÅSemantics encoded by node and edge labels

ÅEdge weights may represent connectivity strengths

ÅExamples:
ïRoadmaps

ïSocial networks

ïBiochemical networks

ïGeneral purpose ontologies(e.g. WordNet, SUMO, CycΣ ¸!DhΣ Χύ

ïΧ

2

Excerpt from YAGO
3

Slightly complex biochemical network

4

Informal Problem Definition

ÅGeneral Task:
Knowledge discovery as opposed to mere look-up

ÅScenario:
Find efficiently the closest connection between any given entities

5

Informal Problem Definition

ÅGeneral Task:
Knowledge discovery as opposed to mere look-up

ÅScenario:
Find efficiently the closest connection between any given entities

ÅExamples:
Encyclopedic queries

What do Jackie Chan, Jules Verne, and Shirley MacLainehave in common?

Criminalisticqueries
What do John Gotti, Paul Castellano, and Carlo Gambinohave in common?

Biomedical queries
What is the relation between Glutamines and Amino Acids?

5

Problem Definition

ÅGiven:
ïRelationship graph

ï entities (query entities or query nodes),

ïa cost function for every subgraph

ÅTask:
ïFind a min-cost subtreeof that interconnects all query entities

ïFind top-k min-cost subtreesthat interconnect all query nodes

ä
Í

=
)(

),()(
gEe

edgw GgÌ
2²l

G

- Steiner Tree Problem (NP-hard)
- Tons of literature and solutions

6

G

Distance Network Heuristic
1) Build complete graph on query

nodes (an edge represents shortest
path between its end nodes)

2) Use MST heuristic to find a solution

Approaches:
DNH[Kou et al.; AI 1981]
FDNH[Mehlhornet al.; IPL 1988]
BANKS I[BhalotiaŜǘ ŀƭΦΤ L/59Ωлнϐ
BANKS II[KacholiaŜǘ ŀƭΦΤ ±[5.Ωлрϐ

Related Work

7

Distance Network Heuristic
1) Build complete graph on query

nodes (an edge represents shortest
path between its end nodes)

2) Use MST heuristic to find a solution

Approaches:
DNH[Kou et al.; AI 1981]
FDNH[Mehlhornet al.; IPL 1988]
BANKS I[BhalotiaŜǘ ŀƭΦΤ L/59Ωлнϐ
BANKS II[KacholiaŜǘ ŀƭΦΤ ±[5.Ωлрϐ

Dynamic Programming
1) Compute optimal results for all

subsets of the query nodes
2) Infer optimal result for all query

nodes

Approaches:
D&W [Dreyfus & Wagner; NJ 1981]
DPBFώ5ƛƴƎ Ŝǘ ŀƭΦΤ L/59Ωлтϐ

Related Work

7

Distance Network Heuristic
1) Build complete graph on query

nodes (an edge represents shortest
path between its end nodes)

2) Use MST heuristic to find a solution

Approaches:
DNH[Kou et al.; AI 1981]
FDNH[Mehlhornet al.; IPL 1988]
BANKS I[BhalotiaŜǘ ŀƭΦΤ L/59Ωлнϐ
BANKS II[KacholiaŜǘ ŀƭΦΤ ±[5.Ωлрϐ

Dynamic Programming
1) Compute optimal results for all

subsets of the query nodes
2) Infer optimal result for all query

nodes

Approaches:
D&W [Dreyfus & Wagner; NJ 1981]
DPBFώ5ƛƴƎ Ŝǘ ŀƭΦΤ L/59Ωлтϐ

Span and Cleanup
1) Start to build an MST from a query

node, until all query nodes are covered
2) Delete redundant nodes

Approaches:
RIU[W.-{Φ [ƛ Ŝǘ ŀƭΦΤ ¢Y59Ωлнϐ
IHLER[Ihler; WG 1991]
R&W [Reich & Widmeyer; WG 1989]

Related Work

7

Distance Network Heuristic
1) Build complete graph on query

nodes (an edge represents shortest
path between its end nodes)

2) Use MST heuristic to find a solution

Approaches:
DNH[Kou et al.; AI 1981]
FDNH[Mehlhornet al.; IPL 1988]
BANKS I[BhalotiaŜǘ ŀƭΦΤ L/59Ωлнϐ
BANKS II[KacholiaŜǘ ŀƭΦΤ ±[5.Ωлрϐ

Dynamic Programming
1) Compute optimal results for all

subsets of the query nodes
2) Infer optimal result for all query

nodes

Approaches:
D&W [Dreyfus & Wagner; NJ 1981]
DPBFώ5ƛƴƎ Ŝǘ ŀƭΦΤ L/59Ωлтϐ

Span and Cleanup
1) Start to build an MST from a query

node, until all query nodes are covered
2) Delete redundant nodes

Approaches:
RIU[W.-{Φ [ƛ Ŝǘ ŀƭΦΤ ¢Y59Ωлнϐ
IHLER [Ihler; WG 1991]
R&W [Reich & Widmeyer; WG 1989]

Related Work

Partition and Index
1) Partition graph into blocks
2) Build inter-block and intra-block

shortest path indexes

Approaches:
BLINKS[H. He et al.; {LDah5Ωлтϐ
EASE[G. Li et al.; {LDah5Ωлуϐ

7

Distance Network Heuristic
1) Build complete graph on query

nodes (an edge represents shortest
path between its end nodes)

2) Use MST heuristic to find a solution

Approaches:
DNH[Kou et al.; AI 1981]
FDNH[Mehlhornet al.; IPL 1988]
BANKS I[BhalotiaŜǘ ŀƭΦΤ L/59Ωлнϐ
BANKS II[KacholiaŜǘ ŀƭΦΤ ±[5.Ωлрϐ

Dynamic Programming
1) Compute optimal results for all

subsets of the query nodes
2) Infer optimal result for all query

nodes

Approaches:
D&W [Dreyfus & Wagner; NJ 1981]
DPBFώ5ƛƴƎ Ŝǘ ŀƭΦΤ L/59Ωлтϐ

Span and Cleanup
1) Start to build an MST from a query

node, until all query nodes are covered
2) Delete redundant nodes

Approaches:
RIU[W.-{Φ [ƛ Ŝǘ ŀƭΦΤ ¢Y59Ωлнϐ
IHLER [Ihler; WG 1991]
R&W [Reich & Widmeyer; WG 1989]

Related Work

Partition and Index
1) Partition graph into blocks
2) Build inter-block and intra-block

shortest path indexes

Approaches:
BLINKS[H. He et al.; {LDah5Ωлтϐ
EASE[G. Li et al.; {LDah5Ωлуϐ

STAR:
Combination of Heuristics + Local Search

7

Related Work
Algorithms Performance Ratio Time Complexity

BLINKS ώIΦ IŜ Ŝǘ ŀƭΦΤ {LDah5Ωлтϐ? ?

R&W [Reich & Widmayer; WG 1989] unbounded

Ihler [WG 1991]

BANKS-I [BhalotiaŜǘ ŀƭΦΤ L/59Ωлнϐ

BANKS-II [KacholiaŜǘ ŀƭΦΤ ±[5.Ωлрϐ

RIU [W.-{Φ [ƛ Ŝǘ ŀƭΦΤ ¢Y59Ωлнϐ

Bateman et al. [ISPD 1997]

Charikaret al. [JA 1999]

STAR

DNH[Kou et al.; AI 1981]

DPBF ώ5ƛƴƎ Ŝǘ ŀƭΦΤ L/59Ωлтϐoptimal

)(lO

)))2/ln(1((llO Ö+

))1((/1 iliiO -

))(log(lO

))/11(2(lO -

)(lO

))log((nnmlO +Ö

))log((nnmnlO +ÖÖ

)log(2 mnnnO Ö+

)log(22 llnO Ö

)(2ii lnO Ö

))log((
min

max mnnlmO
w

w
+ÖÖÖ

Öe

)(2 lnO Ö

)))log((23(mnnlnO ll +++

)(lO))log((nnmnlO +ÖÖ

)(lO)log(2 mnnnO Ö+

squery term # :l depth tree:iGn in nodes # : Gm in edges # :

8

Outline

Intro & Related Work

ÅSTAR:

ïAlgorithm

ïHeuristics

ïAnalysis

ïTop-k

ÅExperiments

ÅConclusion

9

STAR: A Metaheuristic

Å1. Phase:
ïConstruct an initial tree as quicklyas possible, e.g. by:

Åexploiting meta information about the graph

Åexploiting heuristics for fast search space traversal

Åcareful precomputationof interconnecting paths (at least for some nodes)

10

STAR: A Metaheuristic

Å1. Phase:
ïConstruct an initial tree as quicklyas possible, e.g. by:

Åexploiting meta information about the graph

Åexploiting heuristics for fast search space traversal

Åcareful precomputationof interconnecting paths (at least for some nodes)

Å2. Phase:
ï Improve current solution iteratively and quicklyby replacing it with

better solutions from its local neighborhood, e.g. by:

Åeffectively pruning the local neighborhood

Åexploiting heuristics for fast search space traversal

10

STAR: Phase I

Å Often relationship graphs come with taxonomic backbone

(e.g. WordNet, SUMO, CycΣ ¸!DhΣ Χύ

11

STAR: Phase I

Å Often relationship graphs come with taxonomic backbone

(e.g. WordNet, SUMO, CycΣ ¸!DhΣ Χύ

Å Build an initial tree by exploiting

this taxonomic info

Å Follow only typeand

subClassOfedges to

taxonomic ancestor of

query entities

11

STAR: Phase I

Å Often relationship graphs come with taxonomic backbone

(e.g. WordNet, SUMO, CycΣ ¸!DhΣ Χύ

Å Build an initial tree by exploiting

this taxonomic info

Å Follow only typeand

subClassOfedges to

taxonomic ancestor of

query entities

Č Very few edges to visit,

Č Very efficient

11

Max Planck

Max Planck Institute

Angela Merkel

Arnold
Schwarzenegger

politician
physicist

scientist

person

Germany

entity

state

organization

actor

institute

Example: Phase I

12

Max Planck

Max Planck Institute

Angela Merkel

Arnold
Schwarzenegger

politician
physicist

scientist

person

Germany

entity

state

organization

actor

institute

Example: Phase I

12

STAR: Phase I

ÅWhen no taxonomic info available:
ïFast search space traversal

ÅUse breadth-first iteratorsstarting from each query nodes

ÅReturn an initial tree as soon as the iteratorsmeet

ĄMuch faster than using single-source-shortest-path iterators(BANKS strategy)

13

STAR: Phase II

Å Improve current tree as quickly as possible

with better solutions from local neighborhood

Algorithm 1: improve(T)

Q: priority queue of replaceable paths in T

//ordered by decreasing weights

while Q.notEmpty () do

p = Q.dequeue ()

{T 1, T 2} = Remove(p, T)

findShortestPath (T 1, T 2)

//shortest path between T 1 and T 2 in G

if w(Tô) < w(T) then

T = Tô

Q: priority queue of replaceable paths in T

//ordered by decreasing weights

end if

end while

return T

Fast pruning of local
neighborhood

14

STAR: Phase II

Å Improve current tree as quickly as possible

with better solutions from local neighborhood

Algorithm 1: improve(T)

Q: priority queue of replaceable paths in T

//ordered by decreasing weights

while Q.notEmpty () do

p = Q.dequeue ()

{T 1, T 2} = Remove(p, T)

findShortestPath (T 1, T 2)

//shortest path between T 1 and T 2 in G

if w(Tô) < w(T) then

T = Tô

Q: priority queue of replaceable paths in T

//ordered by decreasing weights

end if

end while

return T

Fast pruning of local
neighborhood

Which paths are replaceable?
14

STAR: Phase II

ω Definitions:

(1) Fixed node:either a query node or a node of degree >2 in the current tree

(2) Loose path:path of the current tree in which only end nodes are fixed nodes

Algorithm 1: improve(T)

Q: priority queue of loose paths in T

//ordered by decreasing weights

while Q.notEmpty () do

p = Q.dequeue ()

{T 1, T 2} = Remove(p, T)

findShortestPath (T 1, T 2)

//shortest path between T 1 and T 2 in G

if w(Tô) < w(T) then

T = Tô

Q: priority queue of loose paths in T

//ordered by decreasing weights

end if

end while

return T
14

STAR: Phase II

ω Definitions:

(1) Fixed node:either a query node or a node of degree >2 in the current tree

(2) Loose path:path of the current tree in which only end nodes are fixed nodes

Algorithm 1: improve(T)

Q: priority queue of loose paths in T

//ordered by decreasing weights

while Q.notEmpty () do

p = Q.dequeue ()

{T 1, T 2} = Remove(p, T)

findShortestPath (T 1, T 2)

//shortest path between T 1 and T 2 in G

if w(Tô) < w(T) then

T = Tô

Q: priority queue of loose paths in T

//ordered by decreasing weights

end if

end while

return T
14

STAR: Phase II

ω Definitions:

(1) Fixed node:either a query node or a node of degree >2 in the current tree

(2) Loose path:path of the current tree in which only end nodes are fixed nodes

Algorithm 1: improve(T)

Q: priority queue of loose paths in T

//ordered by decreasing weights

while Q.notEmpty () do

p = Q.dequeue ()

{T 1, T 2} = Remove(p, T)

findShortestPath (T 1, T 2)

//shortest path between T 1 and T 2 in G

if w(Tô) < w(T) then

T = Tô

Q: priority queue of loose paths in T

//ordered by decreasing weights

end if

end while

return T
14

STAR: Phase II

ω Definitions:

(1) Fixed node:either a query node or a node of degree >2 in the current tree

(2) Loose path:path of the current tree in which only end nodes are fixed nodes

Algorithm 1: improve(T)

Q: priority queue of loose paths in T

//ordered by decreasing weights

while Q.notEmpty () do

p = Q.dequeue ()

{T 1, T 2} = Remove(p, T)

findShortestPath (T 1, T 2)

//shortest path between T 1 and T 2 in G

if w(Tô) < w(T) then

T = Tô

Q: priority queue of loose paths in T

//ordered by decreasing weights

end if

end while

return T
14

