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Relationship Graphs

• Simple, flexible, explicit way to represent knowledge 

• Semantics encoded by node and edge labels

• Edge weights may represent connectivity strengths

• Examples:
– Roadmaps

– Social networks

– Biochemical networks

– General purpose ontologies (e.g. WordNet, SUMO, Cyc, YAGO, …)

– …
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Excerpt from YAGO
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Slightly complex biochemical network
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Informal Problem Definition

• General Task:
Knowledge discovery as opposed to mere look-up

• Scenario:
Find efficiently the closest connection between any given entities
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Informal Problem Definition

• General Task:
Knowledge discovery as opposed to mere look-up

• Scenario:
Find efficiently the closest connection between any given entities

• Examples:
Encyclopedic queries

What do Jackie Chan, Jules Verne, and Shirley MacLaine have in common?

Criminalistic queries
What do John Gotti, Paul Castellano, and Carlo Gambino have in common?

Biomedical queries
What is the relation between Glutamines and Amino Acids?
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Problem Definition

• Given: 
– Relationship graph      

– entities  (query entities or query nodes), 

– a cost function                              for every subgraph

• Task:
– Find a min-cost subtree of      that interconnects all query entities

– Find top-k min-cost subtrees that interconnect all query nodes





)(

),()(
gEe

edgw Gg 
2l

G

- Steiner Tree Problem (NP-hard)
- Tons of literature and solutions 
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Distance Network Heuristic
1) Build complete graph on query

nodes (an edge represents shortest 
path between its end nodes)

2) Use MST heuristic to find a solution

Approaches:
DNH [Kou et al.; AI 1981]
FDNH [Mehlhorn et al.; IPL 1988]
BANKS I [Bhalotia et al.; ICDE’02]
BANKS II [Kacholia et al.; VLDB’05]

Related Work
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Partition and Index
1) Partition graph into blocks
2) Build inter-block and intra-block 

shortest path indexes 

Approaches:
BLINKS [H. He et al.; SIGMOD’07]
EASE [G. Li et al.; SIGMOD’08]

STAR: 
Combination of Heuristics + Local Search
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Related Work
Algorithms Performance Ratio Time Complexity

BLINKS [H. He et al.; SIGMOD’07] ? ?

R&W [Reich & Widmayer; WG 1989] unbounded

Ihler [WG 1991]

BANKS-I [Bhalotia et al.; ICDE’02]

BANKS-II [Kacholia et al.; VLDB’05]

RIU [W.-S. Li et al.; TKDE’02]

Bateman et al. [ISPD 1997]

Charikar et al. [JA 1999]

STAR

DNH [Kou et al.; AI 1981]

DPBF [Ding et al.; ICDE’07] optimal 
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Outline

Intro & Related Work

• STAR:

– Algorithm

– Heuristics

– Analysis

– Top-k

• Experiments

• Conclusion
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STAR: A Metaheuristic

• 1. Phase:
– Construct an initial tree as quickly as possible, e.g. by:

• exploiting meta information about the graph

• exploiting heuristics for fast search space traversal

• careful precomputation of interconnecting paths (at least for some nodes)
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STAR: A Metaheuristic

• 1. Phase:
– Construct an initial tree as quickly as possible, e.g. by:

• exploiting meta information about the graph

• exploiting heuristics for fast search space traversal

• careful precomputation of interconnecting paths (at least for some nodes)

• 2. Phase:
– Improve current solution iteratively and quickly by replacing it with 

better solutions from its local neighborhood, e.g. by:

• effectively pruning the local neighborhood

• exploiting heuristics for fast search space traversal
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STAR: Phase I

• Often relationship graphs come with taxonomic backbone

(e.g. WordNet, SUMO, Cyc, YAGO, …)
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STAR: Phase I

• Often relationship graphs come with taxonomic backbone

(e.g. WordNet, SUMO, Cyc, YAGO, …)

• Build an initial tree by exploiting 

this taxonomic info

• Follow only type and 

subClassOf edges to

taxonomic ancestor of 

query entities

 Very few edges to visit,

 Very efficient
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STAR: Phase I

• When no taxonomic info available: 
– Fast search space traversal

• Use breadth-first iterators starting from each query nodes

• Return an initial tree as soon as the iterators meet

Much faster than using single-source-shortest-path iterators (BANKS strategy)

13



STAR: Phase II

• Improve current tree as quickly as possible

with better solutions from local neighborhood

Algorithm 1: improve(T)

Q: priority queue of replaceable paths in T 

//ordered by decreasing weights

while Q.notEmpty()  do

p = Q.dequeue()

{T1, T2} = Remove(p, T)

findShortestPath(T1, T2)

//shortest path between T1 and T2 in G

if w(T’) < w(T)  then

T = T’

Q: priority queue of replaceable paths in T 

//ordered by decreasing weights

end if

end while

return T

Fast pruning of local 
neighborhood
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STAR: Phase II

• Improve current tree as quickly as possible

with better solutions from local neighborhood

Algorithm 1: improve(T)

Q: priority queue of replaceable paths in T 

//ordered by decreasing weights

while Q.notEmpty()  do

p = Q.dequeue()

{T1, T2} = Remove(p, T)

findShortestPath(T1, T2)

//shortest path between T1 and T2 in G

if w(T’) < w(T)  then

T = T’

Q: priority queue of replaceable paths in T 

//ordered by decreasing weights

end if

end while

return T

Fast pruning of local 
neighborhood

Which paths are replaceable?
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STAR: Phase II

• Definitions:

(1) Fixed node: either a query node or a node of degree >2 in the current tree

(2) Loose path: path of the current tree in which only end nodes are fixed nodes 

Algorithm 1: improve(T)

Q: priority queue of loose paths in T 

//ordered by decreasing weights

while Q.notEmpty()  do

p = Q.dequeue()

{T1, T2} = Remove(p, T)

findShortestPath(T1, T2)

//shortest path between T1 and T2 in G

if w(T’) < w(T)  then

T = T’

Q: priority queue of loose paths in T 

//ordered by decreasing weights

end if

end while

return T
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So what? …can’t we search for this tree right away?
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Caution!!!

Search space should be explored carefully!
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STAR: Shortest Path Heuristic
Super fast construction of an initial tree

+ Effective pruning of the local neighborhood

(by choosing the longest loose path to replace)

+ Only 2 SSSP iterators per improvement step 

Low cost for managing data structures

+ Smart expansion strategy for iterators

(Low-degree prioritization & Balanced expansion)

= Very efficient result generation
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STAR: Analysis

Theorem 1: For l query entities, STAR yields an O(log l)  approximation,
independent of the initial tree size.
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STAR: Analysis

Do not bother about the size of the first tree.
Just get it as quickly as possible. 

Theorem 2: STAR has a pseudo-polynomial run-time guarantee. 

… in theory,  and very efficient in practice. 
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Theorem 1: For l query entities, STAR yields an O(log l)  approximation,
independent of the initial tree size.



STAR: Top-K Approximate Trees
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Algorithm 3: getTopK(T, k) //T being the result of phase II

Q: priority queue of trees

//generated during the improvement process of phase II

//ordered by decreasing weights

while Q.size < k  do

T’ = improve’(relaxWeights(T,))

//T cannot be locally improved unless 

//its edge weights are artificially relaxed

//improve’ guarantees node-disjoint improvement

T = reweight(T’) 

//assigns original weights

Q.enqueue(T)

end while

return T

All trees produced during the improvement  
process are stored in the priority queue Q

 Number of trees in Q grows quickly 
during the improvement process
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Experiments

21

• Efficiency oriented approaches

BANKS I [Bhalotia et al. ICDE’02], 

BANKS II [Kacholia et al. VLDB’05]

BLINKS [He et al. SIGMOD’07]

• Approximation oriented approaches

DPBF [Ding et al. ICDE’07], 

DNH [Kou et al. AI 1981]

Main mem. top-1 comparison on DBLP (15K N, 150K E)

(60 random queries for each number of query entities)

Method # query 
entities

Avg. weight Avg. runtime (ms)

STAR
DNH
DPBF
BANKS I
BANKS II

3 0.61
0.7
0.58
1.22
1.81

604.2
5402.9

33096.7
2096.3
3214.1

STAR
DNH
DPBF
BANKS I
BANKS II

5 0.86
0.98
0.81
1.87
2.46

960.2
9166.7

432361.5
3617.3
5797.5

STAR
DNH
DPBF
BANKS I
BANKS II

7 1.12
1.22

?
2.37
3.42

1579.6
17430.9

?
5945.5
9435.5
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• Efficiency oriented approaches

BANKS I [Bhalotia et al. ICDE’02], 

BANKS II [Kacholia et al. VLDB’05]

BLINKS [He et al. SIGMOD’07]

• Approximation oriented approaches

DPBF [Ding et al. ICDE’07], 

DNH [Kou et al. AI 1981]

Main mem. top-k comparison on DBLP (15K N, 150K E)

(60 random queries for each k; 5 query entities per query)

Main mem. top-1 comparison on DBLP (15K N, 150K E)

(60 random queries for each number of query entities)

Method Top-k Avg. weight Avg. runtime (ms)

STAR
BANKS I
BANKS II
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10 1.57
2.43
3.78
n/a

1206.3
5851.8
7895.9

19051.4

STAR
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BANKS II
BLINKS

50 2.23
3.12
5.31
n/a

3118.3
7335.1
8928.3

21837.9

STAR
BANKS I
BANKS II
BLINKS

100 3.01
4.51
6.81
n/a

4705.1
9640.8

11071.3
24632.3
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Super fast construction of an initial tree 
(don’t care about its weight)

+ Fast local search by effectively pruning the 

local neighborhood of the current tree
(choose always the longest loose path to replace)

+ Low cost for managing data structures

(only 2 SSSP iterators per improvement step)

+ Smart exploration of the search space

(low-degree prioritization & balanced expansion)

+ Almost no waste

(every improvement leads to a top-k candidate)   

= Very efficient generation of top-k results

Implemented as a query answering  
component of NAGA

www.mpii.de/kasneci/naga
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