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Relationship Graphs

ÅSimple, flexible, explicitway to represent knowledge 

ÅSemantics encoded by node and edge labels

ÅEdge weights may represent connectivity strengths

ÅExamples:
ïRoadmaps

ïSocial networks

ïBiochemical networks

ïGeneral purpose ontologies(e.g. WordNet, SUMO, CycΣ ¸!DhΣ Χύ

ïΧ
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Excerpt from YAGO
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Slightly complex biochemical network
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Informal Problem Definition

ÅGeneral Task:
Knowledge discovery as opposed to mere look-up

ÅScenario:
Find efficiently the closest connection between any given entities
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Informal Problem Definition

ÅGeneral Task:
Knowledge discovery as opposed to mere look-up

ÅScenario:
Find efficiently the closest connection between any given entities

ÅExamples:
Encyclopedic queries

What do Jackie Chan, Jules Verne, and Shirley MacLainehave in common?

Criminalisticqueries
What do John Gotti, Paul Castellano, and Carlo Gambinohave in common?

Biomedical queries
What is the relation between Glutamines and Amino Acids?
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Problem Definition

ÅGiven: 
ïRelationship graph      

ï entities  (query entities or query nodes), 

ïa cost function                              for every subgraph

ÅTask:
ïFind a min-cost subtreeof      that interconnects all query entities

ïFind top-k min-cost subtreesthat interconnect all query nodes
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- Steiner Tree Problem (NP-hard)
- Tons of literature and solutions 
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Distance Network Heuristic
1) Build complete graph on query

nodes (an edge represents shortest 
path between its end nodes)

2) Use MST heuristic to find a solution

Approaches:
DNH[Kou et al.; AI 1981]
FDNH[Mehlhornet al.; IPL 1988]
BANKS I[BhalotiaŜǘ ŀƭΦΤ L/59Ωлнϐ
BANKS II[KacholiaŜǘ ŀƭΦΤ ±[5.Ωлрϐ

Related Work
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STAR: 
Combination of Heuristics + Local Search
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Related Work
Algorithms Performance Ratio Time Complexity

BLINKS ώIΦ IŜ Ŝǘ ŀƭΦΤ {LDah5Ωлтϐ? ?

R&W [Reich & Widmayer; WG 1989] unbounded

Ihler [WG 1991]

BANKS-I [BhalotiaŜǘ ŀƭΦΤ L/59Ωлнϐ

BANKS-II [KacholiaŜǘ ŀƭΦΤ ±[5.Ωлрϐ
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Bateman et al. [ISPD 1997]
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STAR

DNH[Kou et al.; AI 1981]

DPBF ώ5ƛƴƎ Ŝǘ ŀƭΦΤ L/59Ωлтϐoptimal 
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Outline

Intro & Related Work

ÅSTAR:

ïAlgorithm

ïHeuristics

ïAnalysis

ïTop-k

ÅExperiments

ÅConclusion
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STAR: A Metaheuristic

Å1. Phase:
ïConstruct an initial tree as quicklyas possible, e.g. by:

Åexploiting meta information about the graph

Åexploiting heuristics for fast search space traversal

Åcareful precomputationof interconnecting paths (at least for some nodes)
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STAR: A Metaheuristic

Å1. Phase:
ïConstruct an initial tree as quicklyas possible, e.g. by:

Åexploiting meta information about the graph

Åexploiting heuristics for fast search space traversal

Åcareful precomputationof interconnecting paths (at least for some nodes)

Å2. Phase:
ï Improve current solution iteratively and quicklyby replacing it with 

better solutions from its local neighborhood, e.g. by:

Åeffectively pruning the local neighborhood

Åexploiting heuristics for fast search space traversal
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STAR: Phase I

Å Often relationship graphs come with taxonomic backbone

(e.g. WordNet, SUMO, CycΣ ¸!DhΣ Χύ
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STAR: Phase I

Å Often relationship graphs come with taxonomic backbone

(e.g. WordNet, SUMO, CycΣ ¸!DhΣ Χύ

Å Build an initial tree by exploiting 

this taxonomic info

Å Follow only typeand 

subClassOfedges to

taxonomic ancestor of 

query entities

Č Very few edges to visit,

Č Very efficient
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Max Planck

Max Planck Institute

Angela Merkel

Arnold 
Schwarzenegger

politician
physicist

scientist

person

Germany

entity

state

organization

actor

institute

Example: Phase I
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STAR: Phase I

ÅWhen no taxonomic info available: 
ïFast search space traversal

ÅUse breadth-first iteratorsstarting from each query nodes

ÅReturn an initial tree as soon as the iteratorsmeet

ĄMuch faster than using single-source-shortest-path iterators(BANKS strategy)
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STAR: Phase II

Å Improve current tree as quickly as possible

with better solutions from local neighborhood

Algorithm 1: improve(T)

Q: priority queue of replaceable paths in T 

//ordered by decreasing weights

while Q.notEmpty ()  do

p = Q.dequeue ()

{T 1, T 2} = Remove(p, T)

findShortestPath (T 1, T 2)

//shortest path between T 1 and T 2 in G

if w(Tô) < w(T)  then

T = Tô

Q: priority queue of replaceable paths in T 

//ordered by decreasing weights

end if

end while

return T

Fast pruning of local 
neighborhood
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return T

Fast pruning of local 
neighborhood

Which paths are replaceable?
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STAR: Phase II

ω Definitions:

(1) Fixed node:either a query node or a node of degree >2 in the current tree

(2) Loose path:path of the current tree in which only end nodes are fixed nodes 

Algorithm 1: improve(T)

Q: priority queue of loose paths in T 

//ordered by decreasing weights

while Q.notEmpty ()  do

p = Q.dequeue ()

{T 1, T 2} = Remove(p, T)

findShortestPath (T 1, T 2)

//shortest path between T 1 and T 2 in G

if w(Tô) < w(T)  then

T = Tô

Q: priority queue of loose paths in T 

//ordered by decreasing weights

end if

end while

return T
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