java.util
Class WeakHashMap

java.lang.Object
  extended byjava.util.AbstractMap
      extended byjava.util.WeakHashMap
All Implemented Interfaces:
Map

public class WeakHashMap
extends AbstractMap
implements Map

A hashtable-based Map implementation with weak keys. An entry in a WeakHashMap will automatically be removed when its key is no longer in ordinary use. More precisely, the presence of a mapping for a given key will not prevent the key from being discarded by the garbage collector, that is, made finalizable, finalized, and then reclaimed. When a key has been discarded its entry is effectively removed from the map, so this class behaves somewhat differently than other Map implementations.

Both null values and the null key are supported. This class has performance characteristics similar to those of the HashMap class, and has the same efficiency parameters of initial capacity and load factor.

Like most collection classes, this class is not synchronized. A synchronized WeakHashMap may be constructed using the Collections.synchronizedMap method.

This class is intended primarily for use with key objects whose equals methods test for object identity using the == operator. Once such a key is discarded it can never be recreated, so it is impossible to do a lookup of that key in a WeakHashMap at some later time and be surprised that its entry has been removed. This class will work perfectly well with key objects whose equals methods are not based upon object identity, such as String instances. With such recreatable key objects, however, the automatic removal of WeakHashMap entries whose keys have been discarded may prove to be confusing.

The behavior of the WeakHashMap class depends in part upon the actions of the garbage collector, so several familiar (though not required) Map invariants do not hold for this class. Because the garbage collector may discard keys at any time, a WeakHashMap may behave as though an unknown thread is silently removing entries. In particular, even if you synchronize on a WeakHashMap instance and invoke none of its mutator methods, it is possible for the size method to return smaller values over time, for the isEmpty method to return false and then true, for the containsKey method to return true and later false for a given key, for the get method to return a value for a given key but later return null, for the put method to return null and the remove method to return false for a key that previously appeared to be in the map, and for successive examinations of the key set, the value set, and the entry set to yield successively smaller numbers of elements.

Each key object in a WeakHashMap is stored indirectly as the referent of a weak reference. Therefore a key will automatically be removed only after the weak references to it, both inside and outside of the map, have been cleared by the garbage collector.

Implementation note: The value objects in a WeakHashMap are held by ordinary strong references. Thus care should be taken to ensure that value objects do not strongly refer to their own keys, either directly or indirectly, since that will prevent the keys from being discarded. Note that a value object may refer indirectly to its key via the WeakHashMap itself; that is, a value object may strongly refer to some other key object whose associated value object, in turn, strongly refers to the key of the first value object. One way to deal with this is to wrap values themselves within WeakReferences before inserting, as in: m.put(key, new WeakReference(value)), and then unwrapping upon each get.

The iterators returned by all of this class's "collection view methods" are fail-fast: if the map is structurally modified at any time after the iterator is created, in any way except through the iterator's own remove or add methods, the iterator will throw a ConcurrentModificationException. Thus, in the face of concurrent modification, the iterator fails quickly and cleanly, rather than risking arbitrary, non-deterministic behavior at an undetermined time in the future.

Note that the fail-fast behavior of an iterator cannot be guaranteed as it is, generally speaking, impossible to make any hard guarantees in the presence of unsynchronized concurrent modification. Fail-fast iterators throw ConcurrentModificationException on a best-effort basis. Therefore, it would be wrong to write a program that depended on this exception for its correctness: the fail-fast behavior of iterators should be used only to detect bugs.

This class is a member of the Java Collections Framework.

Since:
1.2
Author:
Doug Lea, Josh Bloch, Mark Reinhold
See Also:
HashMap, WeakReference

Nested Class Summary
private static class WeakHashMap.Entry
          The entries in this hash table extend WeakReference, using its main ref field as the key.
private  class WeakHashMap.EntryIterator
           
private  class WeakHashMap.EntrySet
           
private  class WeakHashMap.HashIterator
           
private  class WeakHashMap.KeyIterator
           
private  class WeakHashMap.KeySet
           
private  class WeakHashMap.ValueIterator
           
private  class WeakHashMap.Values
           
 
Nested classes inherited from class java.util.AbstractMap
AbstractMap.SimpleEntry
 
Field Summary
private static int DEFAULT_INITIAL_CAPACITY
          The default initial capacity -- MUST be a power of two.
private static float DEFAULT_LOAD_FACTOR
          The load fast used when none specified in constructor.
private  Set entrySet
           
private  float loadFactor
          The load factor for the hash table.
private static int MAXIMUM_CAPACITY
          The maximum capacity, used if a higher value is implicitly specified by either of the constructors with arguments.
private  int modCount
          The number of times this HashMap has been structurally modified Structural modifications are those that change the number of mappings in the HashMap or otherwise modify its internal structure (e.g., rehash).
private static Object NULL_KEY
          Value representing null keys inside tables.
private  ReferenceQueue queue
          Reference queue for cleared WeakEntries
private  int size
          The number of key-value mappings contained in this weak hash map.
private  WeakHashMap.Entry[] table
          The table, resized as necessary.
private  int threshold
          The next size value at which to resize (capacity * load factor).
 
Fields inherited from class java.util.AbstractMap
keySet, values
 
Constructor Summary
WeakHashMap()
          Constructs a new, empty WeakHashMap with the default initial capacity (16) and the default load factor (0.75).
WeakHashMap(int initialCapacity)
          Constructs a new, empty WeakHashMap with the given initial capacity and the default load factor, which is 0.75.
WeakHashMap(int initialCapacity, float loadFactor)
          Constructs a new, empty WeakHashMap with the given initial capacity and the given load factor.
WeakHashMap(Map t)
          Constructs a new WeakHashMap with the same mappings as the specified Map.
 
Method Summary
 void clear()
          Removes all mappings from this map.
 boolean containsKey(Object key)
          Returns true if this map contains a mapping for the specified key.
private  boolean containsNullValue()
          Special-case code for containsValue with null argument
 boolean containsValue(Object value)
          Returns true if this map maps one or more keys to the specified value.
 Set entrySet()
          Returns a collection view of the mappings contained in this map.
(package private) static boolean eq(Object x, Object y)
          Check for equality of non-null reference x and possibly-null y.
private  void expungeStaleEntries()
          Expunge stale entries from the table.
 Object get(Object key)
          Returns the value to which the specified key is mapped in this weak hash map, or null if the map contains no mapping for this key.
(package private)  WeakHashMap.Entry getEntry(Object key)
          Returns the entry associated with the specified key in the HashMap.
private  WeakHashMap.Entry[] getTable()
          Return the table after first expunging stale entries
(package private) static int indexFor(int h, int length)
          Return index for hash code h.
 boolean isEmpty()
          Returns true if this map contains no key-value mappings.
 Set keySet()
          Returns a set view of the keys contained in this map.
private static Object maskNull(Object key)
          Use NULL_KEY for key if it is null.
 Object put(Object key, Object value)
          Associates the specified value with the specified key in this map.
 void putAll(Map m)
          Copies all of the mappings from the specified map to this map These mappings will replace any mappings that this map had for any of the keys currently in the specified map.
 Object remove(Object key)
          Removes the mapping for this key from this map if present.
(package private)  WeakHashMap.Entry removeMapping(Object o)
          Special version of remove needed by Entry set
(package private)  void resize(int newCapacity)
          Rehashes the contents of this map into a new array with a larger capacity.
 int size()
          Returns the number of key-value mappings in this map.
private  void transfer(WeakHashMap.Entry[] src, WeakHashMap.Entry[] dest)
          Transfer all entries from src to dest tables
private static Object unmaskNull(Object key)
          Return internal representation of null key back to caller as null
 Collection values()
          Returns a collection view of the values contained in this map.
 
Methods inherited from class java.util.AbstractMap
clone, equals, hashCode, toString
 
Methods inherited from class java.lang.Object
finalize, getClass, notify, notifyAll, wait, wait, wait
 
Methods inherited from interface java.util.Map
equals, hashCode
 

Field Detail

DEFAULT_INITIAL_CAPACITY

private static final int DEFAULT_INITIAL_CAPACITY
The default initial capacity -- MUST be a power of two.

See Also:
Constant Field Values

MAXIMUM_CAPACITY

private static final int MAXIMUM_CAPACITY
The maximum capacity, used if a higher value is implicitly specified by either of the constructors with arguments. MUST be a power of two <= 1<<30.

See Also:
Constant Field Values

DEFAULT_LOAD_FACTOR

private static final float DEFAULT_LOAD_FACTOR
The load fast used when none specified in constructor.

See Also:
Constant Field Values

table

private WeakHashMap.Entry[] table
The table, resized as necessary. Length MUST Always be a power of two.


size

private int size
The number of key-value mappings contained in this weak hash map.


threshold

private int threshold
The next size value at which to resize (capacity * load factor).


loadFactor

private final float loadFactor
The load factor for the hash table.


queue

private final ReferenceQueue queue
Reference queue for cleared WeakEntries


modCount

private volatile int modCount
The number of times this HashMap has been structurally modified Structural modifications are those that change the number of mappings in the HashMap or otherwise modify its internal structure (e.g., rehash). This field is used to make iterators on Collection-views of the HashMap fail-fast. (See ConcurrentModificationException).


NULL_KEY

private static final Object NULL_KEY
Value representing null keys inside tables.


entrySet

private transient Set entrySet
Constructor Detail

WeakHashMap

public WeakHashMap(int initialCapacity,
                   float loadFactor)
Constructs a new, empty WeakHashMap with the given initial capacity and the given load factor.

Parameters:
initialCapacity - The initial capacity of the WeakHashMap
loadFactor - The load factor of the WeakHashMap
Throws:
IllegalArgumentException - If the initial capacity is negative, or if the load factor is nonpositive.

WeakHashMap

public WeakHashMap(int initialCapacity)
Constructs a new, empty WeakHashMap with the given initial capacity and the default load factor, which is 0.75.

Parameters:
initialCapacity - The initial capacity of the WeakHashMap
Throws:
IllegalArgumentException - If the initial capacity is negative.

WeakHashMap

public WeakHashMap()
Constructs a new, empty WeakHashMap with the default initial capacity (16) and the default load factor (0.75).


WeakHashMap

public WeakHashMap(Map t)
Constructs a new WeakHashMap with the same mappings as the specified Map. The WeakHashMap is created with default load factor, which is 0.75 and an initial capacity sufficient to hold the mappings in the specified Map.

Parameters:
t - the map whose mappings are to be placed in this map.
Throws:
NullPointerException - if the specified map is null.
Since:
1.3
Method Detail

maskNull

private static Object maskNull(Object key)
Use NULL_KEY for key if it is null.


unmaskNull

private static Object unmaskNull(Object key)
Return internal representation of null key back to caller as null


eq

static boolean eq(Object x,
                  Object y)
Check for equality of non-null reference x and possibly-null y. By default uses Object.equals.


indexFor

static int indexFor(int h,
                    int length)
Return index for hash code h.


expungeStaleEntries

private void expungeStaleEntries()
Expunge stale entries from the table.


getTable

private WeakHashMap.Entry[] getTable()
Return the table after first expunging stale entries


size

public int size()
Returns the number of key-value mappings in this map. This result is a snapshot, and may not reflect unprocessed entries that will be removed before next attempted access because they are no longer referenced.

Specified by:
size in interface Map
Overrides:
size in class AbstractMap
Returns:
the number of key-value mappings in this map.

isEmpty

public boolean isEmpty()
Returns true if this map contains no key-value mappings. This result is a snapshot, and may not reflect unprocessed entries that will be removed before next attempted access because they are no longer referenced.

Specified by:
isEmpty in interface Map
Overrides:
isEmpty in class AbstractMap
Returns:
true if this map contains no key-value mappings.

get

public Object get(Object key)
Returns the value to which the specified key is mapped in this weak hash map, or null if the map contains no mapping for this key. A return value of null does not necessarily indicate that the map contains no mapping for the key; it is also possible that the map explicitly maps the key to null. The containsKey method may be used to distinguish these two cases.

Specified by:
get in interface Map
Overrides:
get in class AbstractMap
Parameters:
key - the key whose associated value is to be returned.
Returns:
the value to which this map maps the specified key, or null if the map contains no mapping for this key.
See Also:
put(Object, Object)

containsKey

public boolean containsKey(Object key)
Returns true if this map contains a mapping for the specified key.

Specified by:
containsKey in interface Map
Overrides:
containsKey in class AbstractMap
Parameters:
key - The key whose presence in this map is to be tested
Returns:
true if there is a mapping for key; false otherwise

getEntry

WeakHashMap.Entry getEntry(Object key)
Returns the entry associated with the specified key in the HashMap. Returns null if the HashMap contains no mapping for this key.


put

public Object put(Object key,
                  Object value)
Associates the specified value with the specified key in this map. If the map previously contained a mapping for this key, the old value is replaced.

Specified by:
put in interface Map
Overrides:
put in class AbstractMap
Parameters:
key - key with which the specified value is to be associated.
value - value to be associated with the specified key.
Returns:
previous value associated with specified key, or null if there was no mapping for key. A null return can also indicate that the HashMap previously associated null with the specified key.

resize

void resize(int newCapacity)
Rehashes the contents of this map into a new array with a larger capacity. This method is called automatically when the number of keys in this map reaches its threshold. If current capacity is MAXIMUM_CAPACITY, this method does not resize the map, but but sets threshold to Integer.MAX_VALUE. This has the effect of preventing future calls.

Parameters:
newCapacity - the new capacity, MUST be a power of two; must be greater than current capacity unless current capacity is MAXIMUM_CAPACITY (in which case value is irrelevant).

transfer

private void transfer(WeakHashMap.Entry[] src,
                      WeakHashMap.Entry[] dest)
Transfer all entries from src to dest tables


putAll

public void putAll(Map m)
Copies all of the mappings from the specified map to this map These mappings will replace any mappings that this map had for any of the keys currently in the specified map.

Specified by:
putAll in interface Map
Overrides:
putAll in class AbstractMap
Parameters:
m - mappings to be stored in this map.
Throws:
NullPointerException - if the specified map is null.

remove

public Object remove(Object key)
Removes the mapping for this key from this map if present.

Specified by:
remove in interface Map
Overrides:
remove in class AbstractMap
Parameters:
key - key whose mapping is to be removed from the map.
Returns:
previous value associated with specified key, or null if there was no mapping for key. A null return can also indicate that the map previously associated null with the specified key.

removeMapping

WeakHashMap.Entry removeMapping(Object o)
Special version of remove needed by Entry set


clear

public void clear()
Removes all mappings from this map.

Specified by:
clear in interface Map
Overrides:
clear in class AbstractMap

containsValue

public boolean containsValue(Object value)
Returns true if this map maps one or more keys to the specified value.

Specified by:
containsValue in interface Map
Overrides:
containsValue in class AbstractMap
Parameters:
value - value whose presence in this map is to be tested.
Returns:
true if this map maps one or more keys to the specified value.

containsNullValue

private boolean containsNullValue()
Special-case code for containsValue with null argument


keySet

public Set keySet()
Returns a set view of the keys contained in this map. The set is backed by the map, so changes to the map are reflected in the set, and vice-versa. The set supports element removal, which removes the corresponding mapping from this map, via the Iterator.remove, Set.remove, removeAll, retainAll, and clear operations. It does not support the add or addAll operations.

Specified by:
keySet in interface Map
Overrides:
keySet in class AbstractMap
Returns:
a set view of the keys contained in this map.

values

public Collection values()
Returns a collection view of the values contained in this map. The collection is backed by the map, so changes to the map are reflected in the collection, and vice-versa. The collection supports element removal, which removes the corresponding mapping from this map, via the Iterator.remove, Collection.remove, removeAll, retainAll, and clear operations. It does not support the add or addAll operations.

Specified by:
values in interface Map
Overrides:
values in class AbstractMap
Returns:
a collection view of the values contained in this map.

entrySet

public Set entrySet()
Returns a collection view of the mappings contained in this map. Each element in the returned collection is a Map.Entry. The collection is backed by the map, so changes to the map are reflected in the collection, and vice-versa. The collection supports element removal, which removes the corresponding mapping from the map, via the Iterator.remove, Collection.remove, removeAll, retainAll, and clear operations. It does not support the add or addAll operations.

Specified by:
entrySet in interface Map
Specified by:
entrySet in class AbstractMap
Returns:
a collection view of the mappings contained in this map.
See Also:
WeakHashMap.Entry